Prognostic significance of Wilms Tumor 1 (WT1) protein expression in breast cancer

Meme kanserinde Wilms Tümör 1 (WT1) protein ekspresyonunun prognostik önemi


Abstract views: 44 / PDF downloads: 24

Authors

  • Celaletdin Camcı University of Gaziantep, Faculty of Medicine, Department of Medical Oncology, Gaziantep
  • Mehmet Emin Kalender University of Gaziantep, Faculty of Medicine, Department of Medical Oncology, Gaziantep
  • Semra Paydaş Çukurova University, Faculty of Medicine, Department of Medical Oncology, Adana
  • Alper Sevinç University of Gaziantep, Faculty of Medicine, Department of Medical Oncology, Gaziantep
  • Suzan Zorludemir Çukurova University, Faculty of Medicine, Department of Pathology, Adana
  • Ali Suner University of Gaziantep, Faculty of Medicine, Department of Medical Oncology, Gaziantep

DOI:

https://doi.org/10.5455/GMJ-30-2011-34

Keywords:

Breast cancer, immunohistochemistry, prognosis, premenopausal, WT1

Abstract

Breast cancer is the most common cancer among women all over the world. Since the clinical outcome of breast cancer may differ among some women who have the same clinicopathological stage, researchers focused on additional prognostic parameters to predict the tumor behavior. The aim of this study was to investigate the prognostic value of Wilms Tumor 1 (WT1) expression in tumor tissues and to compare it with known prognostic variables in patients with breast cancer. In patients with breast cancer, we investigated the relationship between (WT1) protein expression in tumor and surrounding tissues and prognostic variables including age, pathologic type, axillary node involvement, estrogen receptor (ER) status, menopausal status, stage (TNM), tumor grade and treatment. Borderline significance was detected between WT1 monoclonal antibody (mAb) staining and premenopausal state (p=0.051). Additionally, surrounding tissue staining showed significant correlations with grade (p=0.045), stage (p=0.026), lymph node status (p=0.026), and axillary involvement (p=0.02), respectively. No correlation was demonstrated between relapse free survival, relapse sites and WT1 mAb staining of tumor and surrounding tissues (p=0.36). WT1 mAb staining was demonstrated in human breast cancer tissues, and in this study we have used monoclonal antibody against WT1 on paraffin-embedded tissue samples. The results indicate that WT1 expression by tumor is more evident in premenopausal state rather than postmenopausal period. To confirm the results, we need large scale studies on WT1 expression in breast cancer.

Metrics

Metrics Loading ...

References

Gillmore R, Xue SA, Holler A, Kaeda J, Hadjiminas D, Healy V, et al. Detection of Wilms' tumor antigen--specific CTL in tumor-draining lymph nodes of patients with early breast cancer. Clin Cancer Res 2006;12(1):34-42.

Fisher B, Osborne CK, Margolese RG, Bloomer WD. Neoplasm of the breast. In: Holland JF, Bast RC Jr, Morton DL, Frei E III, Kufe DW, Weichselbaum RR (eds). Cancer Medicine,Williams and Wilkins Co: International Edition, 1997: 2362-6.

Hennessy C, Henry JA, May FE, Westley BR, Angus B, Lennard TW. Expression of the antimetastatic gene nm23 in human breast cancer: an association with good prognosis. J Natl Cancer Inst 1991;83(4):281-5.

Nemoto T, Natarajan N, Bedwani R, Vana J, Murphy GP. Breast cancer in the medial half. Results of the 1978 national survey of the American College of Surgeons. Cancer 1983;51(8):1333-8.

Sauer T, Furu I, Beraki K, Jebsen PW, Ormerod E, Naess O. nm23 protein expression in fine needle aspirates from breast carcinoma: inverse correlation with cytologic grading, lymph node status and ploidy. Cancer 1998;84(2):109-14.

Thompson AM, Anderson TJ, Condie A, Prosser J, Chetty U, Carter DC, et al. p53 allele losses, mutations and expressions in breast cancer and their relationship to clinic-pathological parameters. Int J Cancer 1992;50(4):528-32.

Oji Y, Ogawa H, Tamaki H, Oka Y, Tsuboi A, Kim EH, et al. Expression of the Wilms' tumor gene WT1 in solid tumors and its involvement in tumor cell growth. Jpn J Cancer Res 1999;90(2):194-204.

Amin KM, Litzky LA, Smythe WR, Mooney AM, Morris JM, Mews DJ, et al. Wilms’ tumor 1 susceptibility (WT1) gene products are selectively expressed in malignant mesothelioma. Am J Pathol 1995;146(2):344-56.

Kumar-Singh S, Segers K, Rodeck U, Backhovens H, Bogers J, Weyler J, et al. WT1 mutation in malignant mesothelioma and WT1 immunoreactivity in relation to p53 and growth factor receptor expression, cell-type transition, and prognosis. J Pathol 1997;181(1):67-74.

Menssen HD, Renkl HJ, Rodeck U, Kari C, Schwartz S, Thiel E. Detection of monoclonal antibodies of the Wilms’ tumor (WT1) nuclear protein in patients with acute leukemia. Int J Cancer 1997;70(5):518-23.

Haber DA, Englert C, Maheswaran S. Functional propeties of WT1. Med Pediatr Oncol 1996;27(5):453-5.

Tsuboi A, Oka Y, Osaki T, Kumagai T, Tachibana I, Hayashi S, et al. WT1 peptide-based immunotherapy for patients with lung cancer: report of two cases. Microbiol Immunol 2004;48(3):175-84.

Oji Y, Miyoshi Y, Koga S, Nakano Y, Ando A, Nakatsuka S, et al. Overexpression of the Wilms' tumor gene WT1 in primary thyroid cancer. Cancer Sci 2003;94(7):606-11.

Oji Y, Inohara H, Nakazawa M, Nakano Y, Akahani S, Nakatsuka S, et al. Overexpression of the Wilms' tumor gene WT1 in head and neck squamous cell carcinoma. Cancer Sci 2003;94(6):523-9.

Oji Y, Yamamoto H, Nomura M, Nakano Y, Ikeba A, Nakatsuka S, et al. Overexpression of the Wilms' tumor gene WT1 in colorectal adenocarcinoma. Cancer Sci 2003;94(8):712- 7.

Benjamin LE, Fredericks WJ, Barr FG, Rauscher FJ 3rd. Fusion of the EWS1 and WT1 genes as a result of the t(11;22)(p13;q12) translocation in desmoplastic small round cell tumors. Med Pediatr Oncol 1996;27(5):434-9.

Netinatsunthorn W, Hanprasertpong J, Dechsukhum C, Leetanaporn R, Geater A. WT1 gene expression as a prognostic marker in advanced serous epithelial ovarian carcinoma: an immunohistochemical study. BMC Cancer. 2006;6:90.

Tajinda K, Carrol J, Roberts CR Jr. Regulation of insulin-like growth factor I receptor promoter activity by wild-type and mutant version of the WT1 tumor suppressor. Endocrinology 1999;140(10):4713-24.

Cooper MG. Tumor suppressor genes. The Cell:A Molecular Approach, 1st edn, ASM press, 1997:626-7.

Maheswaran S, Park S, Bernard A, Morris JF, Rauscher FJ 3d, Hill DE, et al. Physical and functional interaction between WT1 and p53 proteins. Proc Natl Acad Sci USA 1993; 90(11):5100- 4.

Reizner N, Maor S, Sarfstein R, Abramovitch S, Welshons WV, Curran EM, et al. The WT1 Wilms' tumor suppressor gene product interacts with estrogen receptor-alpha and regulates IGF-I receptor gene transcription in breast cancer cells. J Mol Endocrinol 2005;35(1):135-44.

Tuna M, Chavez-Reyes A, Tari AM. HER2/neu increases the expression of Wilms' Tumor 1 (WT1) protein to stimulate Sphase proliferation and inhibit apoptosis in breast cancer cells. Oncogene 2005;24(9):1648-52.

Miyoshi Y, Ando A, Egawa C, Taguchi T, Tamaki Y, Tamaki H, et al. High expression of Wilms' tumor suppressor gene predicts poor prognosis in breast cancer patients. Clin Cancer Res 2002;8(5):1167-71.

Renshaw J, Orr RM, Walton MI, Te Poele R, Williams RD, Wancewicz EV, et al. Disruption of WT1 gene expression and exon 5 splicing following cytotoxic drug treatment: antisense down-regulation of exon 5 alters target gene expression and inhibits cell survival. Mol Cancer Ther 2004;3(11):1467-84.

Zapata-Benavides P, Tuna M, Lopez-Berestein G, Tari AM. Downregulation of Wilms' tumor 1 protein inhibits breast cancer proliferation. Biochem Biophys Res Commun 2002;295(4):784-90.

Oji Y, Miyoshi Y, Kiyotoh E, Koga S, Nakano Y, Ando A, et al. Absence of mutations in the Wilms' tumor gene WT1 in primary breast cancer. Jpn J Clin Oncol 2004;34(2):74-7.

Oka Y, Tsuboi A, Taguchi T, Osaki T, Kyo T, Nakajima H, et al. Induction of WT1 (Wilms' tumor gene)-specific cytotoxic T lymphocytes by WT1 peptide vaccine and the resultant cancer regression. Proc Natl Acad Sci USA 2004;101(38):13885-90.

Morita S, Oka Y, Tsuboi A, Kawakami M, Maruno M, Izumoto S, et al. A phase I/II trial of a WT1 (Wilms' tumor gene) peptide vaccine in patients with solid malignancy: safety assessment based on the phase I data. Jpn J Clin Oncol 2006;36(4):231-6.

Loeb DM, Evron E, Patel CB, Sharma PM, Niranjan B, Buluwela L, et al. Wilms' tumor suppressor gene (WT1) is expressed in primary breast tumors despite tumor-specific promoter methylation. Cancer Res 2001;61(3):921-5.

Silberstein GB, Van Horn K, Strickland P, Roberts CT Jr, Daniel CW. Altered expression of the WT1 Wilms tumor suppressor gene in human breast cancer. Proc Natl Acad Sci USA 1997;94(15):8132-7.

Downloads

Published

2023-05-01

How to Cite

Camcı, C., Kalender, M. E., Paydaş, S., Sevinç, A., Zorludemir, S., & Suner, A. (2023). Prognostic significance of Wilms Tumor 1 (WT1) protein expression in breast cancer: Meme kanserinde Wilms Tümör 1 (WT1) protein ekspresyonunun prognostik önemi. European Journal of Therapeutics, 17(2), 67–72. https://doi.org/10.5455/GMJ-30-2011-34

Issue

Section

Original Articles