Ocimum gratissimum impairs gut glucose absorption but enhances water absorption in Streptotozocin induced diabetic rats
Streptotozocin ile indüklenen diyabetik farelerde ocimum gratissimum bağırsak glukoz emilimini bozar ama su emilimini artırır
Abstract views: 94 / PDF downloads: 48
DOI:
https://doi.org/10.5455/GMJ-30-168994Keywords:
Diabetes mellitus, glucose absorption, ocimum gratissimum, water absorptionAbstract
The handling of ingested glucose by the gut is important in the regulation of postprandial glucose concentrations and, hence glycaemic control and absorption of water is secondary to solute absorption. This study therefore assesses the effect of diabetes mellitus (DM) and treatment with Ocimum gratissimum (OG) on gut glucose and water absorption. Phytochemical analysis and LD50 of OG was conducted as preliminary studies. Diabetes was induced in group 2; diabetic untreated group (DM group) and 3; diabetic treated group (DMTgroup) with a single i.p dose of 65mg/kg of Streptotozocin (STZ), with the later treated with 1500mg/kg of OG. Tissue sections for histology were obtained by standard method and absorption of fluid and glucose conducted by the everted sac technique. The result showed that glucose uptake was significantly lower (P<0.05) in the DM and DMT groups compared to the control while the fluid uptake in the DMT group was significantly lower (P<0.05) than the DM group and lowest in the control group. OG treatment reduces glucose absorption but increases gut fluid intake. It is possible that the hypoglycemic effect of OG may be related to reduction in intestinal glucose absorption. This appears to be at the expense of the integrity of the intestinal epithelium.
Metrics
References
Wilmer A, Van C. E., Andrioli A., Tack J. (1998). Ambulatory gastrojejunal manometry in severe motility-like dyspepsia: lack of correlation between dysmotility, symptoms, and gastric emptying. Gut. 42: 235-242.
Thomas D., Elliott E. J. (2009). Low glycaemic index, on low glycaemic load, diets for diabetes mellitus. Cochrane Database System Review. 21 (1) CD006296.
Southgate D. A. (1995). Digestion and metabolism of sugars. American Journal of Clinical Nutrition. 62: 203-210.
Levin R. J. (1994). Digestion and absorption of carbohydrates – from molecules and membranes to humans. American Journal Clinical Nutrition. 59: 690-699.
Kellet G. L., Jamal A., Robertson J. P., Wollen N. (1984). The acute regulation of glucose absorption, transport and metabolism in rat small intestine by insulin in vivo. Biochemistry Journal. 219: 1027-1035.
Bieberdorf F. A., Morawski S., Fordtran J. S. (1975). Effect of sodium, mannitol, and magnesium on glucose, galactose, 3-O-methylglucose, and fructose absorption in the human ileum. Gastroenterology. 68(1)58-66.
Hsieh P. S., Moore M. C., Neal D. W., Cherrington A. D. (2000). Importance of the hepatic arterial glucose level in generation of the portal signal in conscious dogs. American Journal of Physiology. 279: 284-292.
Radziuk J., McDonald T. J., Rubenstein D., Dupre J. (1978). Initial splanchnic extraction of ingested glucose in normal man. Metabolism. 27: 657-669.
Ferrannini E., Bjorkman O., Reichard G.A.J.R., Pilo A. (1985). The disposal of an oral glucose load in healthy subjects. A quantitative study. Diabetes. 34: 580-588.
Fujita Y., Kojima H., Hidaka H., Fujimiya M. (1998). Increased intestinal glucose absorption and postprandial hyperglycemia at the early step of glucose intolerance in Otsuka Long-Evans Tokushima Fatty rats. Diabetologia. 41:1459-1466.
Burant C.F., Flink S., DePaoli A. M., Chen J. (1994). Small intestine hexose transport in experimental diabetes, increased transporter mRNA and protein expression in enterocytes. Journal of Clinical Investions. 93:578-585.
Miyamoto K., Hase K., Taketani Y., Minami H. (1991). Diabetes and glucose transporter gene expression in rat small intestine. Biochemical & Biophysical Research Communications. 181: 1110-1117.
Dyer J., Wood I. S., Palejwala A., Ellis A., Shirazi-Beechey S. P. (2002). Expression of monosaccharide transporters in intestine of diabetic humans. American Journal Physiology. 282: G241-248.
Fedorak R. N., Chang E. B., Madara J. L., Field M. (1987). Intestinal adaptation to diabetes. Altered Na-dependent nutrient absorption in streptozotocin-treated chronically diabetic rats. Journal Clinical Investigations. 79: 1571-1578.
Fedorak R. N., Gershon M. D., Field M. (1989). Induction of intestinal glucose carriers in streptozotocin-treated chronically diabetic rats. Gastroenterology. 96: 37-44.
Linda S. C. (1998). Gastrointestinal system and endocrinology. Board review series physiology (3rd Edition). Lippincott Williams & Wilkins. 41-83.
Reddy L. P., Reddy L. G. S., Reddy L. V. (2008). Gastrointestinal System. Fundamentals of Medical Physiology. Paras Medical Publishers. 379 – 434.
Onajobi F. D. (1986). Smooth muscle contracting lipid soluble principles in chromatographic fractions of Ocimum gratissimum. Journal of Ethnopharmacology. 18:3-11.
Ilori M., Sheteolu A. O., Omonibggehin E. A., Adeneye A. A. (1996). Antidiarrhoeal activities of Ocimum gratissimum (Lamiaceae). J Diarrhoeal Diseases Research. 14: 283-285.
Orafidiya O. O., Elujoba A. A., Iwalewa F. O., Okeke I. N. (2000). Evaluation of antidiarrhoeal properties of Ocimum gratissimum volatile oil and its activity against enteroagregative Eschrichia coli. Pharmacology Letters. 10: 9-12.
Aguiyi J. C., Obi C. I., Gang S. S., Igweh A. C. (2000). Hypoglycaemic activity of Ocimum gratissimum in rats. Fitoterapia. 71(4): 444-446.
Adesina S. K. (1982). Studies on some plants used as anti convulsants in Amerindian and African traditional medicine. Fitoterapia. 53: 147-162.
Lorke D. (1983). A new approach to practical acute toxicity testing. Arch. Toxicol. 54: 275-287.
Trease G. E., Evans W. C. (1984). Trease and Evans' Pharmacognosy: A Physician's Guide to Herbal Medicine. 13th Edition, Bailliere Tindall London.
Sofowora L. A. (1984). Medicinal plants and traditional medicine in Africa. Spectrum Books Ltd, Ibadan. 85-82.
Osim E. E. (2002). Elements of Gastrointestinal Tract Physiology, Calabar; Helimo Associates. 2-11, 57-61.
Wilson T. H., Wiscman G. (1954). The use of sacs of evented small intestine for the study of the transference of substance from the mucosal to the serosal surface. Journal of Physiology. 123: 116-125.
Adeniyi K. O., Olowookorun M. O. (1987). Intestinal fluids and glucose transport in rats. Effects of thyroidectomy and thyroxine administration. Nigeria Journal of Physiological Sciences. 3:61-66.
Wilson T. H., Wiscman G. (1954). The use of sacs of evented small intestine for the study of the transference of substance from the mucosal to the serosal surface. Journal of Physiology. 123: 116-125.
Barros L. F., Young M., Saklatvala J., Baldwin S. A. (1997). Evidence of two mechanisms for the activation of the glucose transporter GLUTI by anisomycin. Journal of Physiology. 504: 517-525.
Ebert R., Creutzfeldt W. (1980). Reversal of impaired GIP and insulin secretion in patients with pancreatogenic steatorrhea following enzyme substitution. Diabetologia. 19: 198-204.
Okon U. A., Ikpi D. E., Ben E. E. (2013). Ocimum gratissimum alleviates derangements in serum and biliary blirubin, cholesterol and electrolytes in streptozotocin-induced diabetic rats. International journal of Biochemistry Research and Review. 3(3):171-189.
Salter R. H. (2004). Essential clinical medicine illustrated. Lippincott Williams & Wilkins, Bristol. 41-83
Okon U. A., Owo D. U., Udokang N. E., Udobang J. A., Ekpenyong C. E. (2012). Oral Administration of Aqueous Leaf Extract of Ocimum gratissimum Ameliorates Polyphagia, Polydipsia and Weight Loss in Streptozotocin Induced Diabetic Rats. American Journal of Medicine and Medical Sciences. 2(3): 45-49
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 European Journal of Therapeutics
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
The content of this journal is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.