Management of Type 2 Diabetes Mellitus with Overweight: Focus on SGLT-2 Inhibitors and GLP-1 Receptor Agonists


Abstract views: 64 / PDF downloads: 32

Authors

DOI:

https://doi.org/10.5152/EurJTher.2019.18067

Keywords:

Anti-diabetic drugs, glycemic control, type 2 diabetes mellitus

Abstract

GLP-1 receptor agonists (GLP-1RAs) and SGLT-2 inhibitors, along with the widely used metformin, are the drug classes discussed in this mini-review. GLP-1RAs stimulate insulin secretion and slow down gastric emptying, thereby contributing to weight loss. SGLT-2 inhibitors lessen renal glucose reabsorption, lower blood pressure, and contribute to body weight reduction. A similar effect on body weight should be anticipated from the intestinal alpha-glucosidase inhibitor (acarbose), but its efficiency depends on the carbohydrate contents of diet. Notably, the hypoglycemic effects of the two drug classes are unrelated to the stimulation of insulin secretion by beta cells. An exhaustion of beta cells as a result of a prolonged stimulation is regarded as possible. Insulin hypersecretion contributes to an increase in body weight. This indicates that, other things being equal, drugs acting without the stimulation of insulin secretion may be preferable. In conclusion, the goals of glycemic control need to be individualized based on age, prognosis, the presence of macrovascular disease, and the risk of hypoglycemia.

Metrics

Metrics Loading ...

References

American Diabetes Association. 15. Diabetes Advocacy: Standards of Medical Care in Diabetes-2018. Diabetes Care 2018; 41(Suppl. 1): S152-3.

Scheen AJ. Pharmacological management of type 2 diabetes: what’s new in 2017? Expert Rev Clin Pharmacol 2017; 10: 1383-94.

Wróbel MP, Marek B, Kajdaniuk D, Rokicka D, Szymborska-Kajanek A, Strojek K. Metformin - a new old drug. Endokrynol Pol 2017; 68: 482-96.

Pfeiffer AFH, Klein HH. The treatment of type 2 diabetes. Dtsch Arztebl Int 2014; 111: 69-81.

Malin SK, Kashyap SR. Effects of metformin on weight loss: potential mechanisms. Curr Opin Endocrinol Diabetes Obes 2014; 21: 323-9.

Esquivel MA, Lansang MC. Optimizing diabetes treatment in the presence of obesity. Cleve Clin J Med 2017; 84(7 Suppl 1): S22-9.

Ganda OP. Antihyperglycemic drugs and cardiovascular outcomes in type 2 diabetes. Cleve Clin J Med 2016; 83(5 Suppl 1): S11-7.

Hamdy O, Ashrafzadeh S, Mottalib A. Weight management in patients with type 2 diabetes: a multidisciplinary real-world approach. Curr Diab Rep 2018; 18: 66.

Bonnet F, Scheen A. Understanding and overcoming metformin gastrointestinal intolerance. Diabetes Obes Metab 2017; 19: 473-81.

McCreight LJ, Bailey CJ, Pearson ER. Metformin and the gastrointestinal tract. Diabetologia 2016; 59: 426-35.

Fujita Y, Inagaki N. Metformin: New preparations and nonglycemic benefits. Curr Diab Rep 2017; 17: 5.

Upadhyay J, Polyzos SA, Perakakis N, Thakkar B, Paschou SA, Katsiki N, et al. Pharmacotherapy of type 2 diabetes: An update. Metabolism 2018; 78: 13-42.

Garber AJ. Incretin effects on β-cell function, replication, and mass: the human perspective. Diabetes Care 2011;34 (Suppl 2): S258-63.

Kaur P, Mishra SK, Mithal A, Saxena M, Makkar A, Sharma P. Clinical experience with Liraglutide in 196 patients with type 2 diabetes from a tertiary care center in India. Indian J Endocrinol Metab 2014; 18: 77-82.

Dungan KM, Weitgasser R, Perez Manghi F, Pintilei E, Fahrbach JL, Jiang HH, et al. A 24-week study to evaluate the efficacy and safety of once-weekly dulaglutide added on to glimepiride in type 2 diabetes (AWARD-8). Diabetes Obes Metab 2016; 18: 475-82.

Saisho Y. Importance of Beta Cell Function for the Treatment of Type 2 Diabetes. J Clin Med 2014; 3: 923-43.

Talbot J, Joly E, Prentki M, Buteau J. β-Arrestin1-mediated recruitment of c-Src underlies the proliferative action of glucagon-like peptide-1 in pancreatic β INS832/13 cells. Mol Cell Endocrinol 2012; 364: 65-70.

van Raalte DH, Verchere CB. Glucagon-like peptide-1 receptor agonists: beta-cell protection or exhaustion? Trends Endocrinol Metab2016; 27: 442-5.

Bui V, Neumiller JJ. Oral Semaglutide. Clin Diabetes 2018; 36: 327-9.

DiNicolantonio JJ, Bhutani J, O’Keefe JH. Acarbose: safe and effective for lowering postprandial hyperglycaemia and improving cardiovascular outcomes. Open Heart 2015; 2: e000327.

van de Laar FA, Lucassen PL, Akkermans RP, van de Lisdonk EH, Rutten GE, van Weel C, et al. Alpha-glucosidase inhibitors for patients with type 2 diabetes: results from a Cochrane systematic review and meta-analysis. Diabetes Care 2005; 28: 154-63.

Gross JL, Kramer CK, Leitão CB, Hawkins N, Viana LV, Schaan BD, et al. Effect of antihyperglycemic agents added to metformin and a sulfonylurea on glycemic control and weight gain in type 2 diabetes: a network meta-analysis. Ann Intern Med 2011; 154: 672-9.

Schnell O, Weng J, Sheu WH, Watada H, Kalra S, Soegondo S, et al. Acarbose reduces body weight irrespective of glycemic control in patients with diabetes: results of a worldwide, non-interventional, observational study data pool. J Diabetes Complications 2016; 30: 628-37.

Abdelgadir E, Rashid F, Bashier A, Ali R. SGLT-2 Inhibitors and cardiovascular protection: Lessons and gaps in understanding the current outcome trials and possible benefits of combining SGLT-2 inhibitors with GLP-1 agonists. J Clin Med Res 2018; 10: 615-25.

Ueda P, Svanström H, Melbye M, Eliasson B, Svensson AM, Franzén S, et al. Sodium glucose cotransporter 2 inhibitors and risk of serious adverse events: nationwide register based cohort study. BMJ 2018; 363: k4365.

Puckrin R, Saltiel MP, Reynier P, Azoulay L, Yu OHY, Filion KB. SGLT-2 inhibitors and the risk of infections: a systematic review and meta-analysis of randomized controlled trials. Acta Diabetol 2018; 55: 503-14.

Gadzhanova S, Pratt N, Roughead E. Use of SGLT2 inhibitors for diabetes and risk of infection: Analysis using general practice records from the NPS Medicine Wise Medicine Insight program. Diabetes Res Clin Pract 2017; 130: 180-5.

Clar C, Gill JA, Court R, Waugh N. Systematic review of SGLT2 receptor inhibitors in dual or triple therapy in type 2 diabetes. BMJ Open 2012; 2: e001007.

Consoli A, Formoso G, Baldassarre MPA, Febo F. A comparative safety review between GLP-1 receptor agonists and SGLT-2 inhibitors for diabetes treatment. Expert Opin Drug Saf 2018; 17: 293-302.

Vallon V, Thomson SC. Targeting renal glucose reabsorption to treat hyperglycaemia: the pleiotropic effects of SGLT2 inhibition. Diabetologia 2017; 60: 215-25.

DeFronzo RA. Combination therapy with GLP-1 receptor agonist and SGLT2 inhibitor. Diabetes Obes Metab 2017; 19: 1353-62.

Brouns F. Overweight and diabetes prevention: is a low-carbohydrate - high-fat diet recommendable? Eur J Nutr 2018; 57: 1301-12.

Kohler S, Zeller C, Iliev H, Kaspers S. Safety and tolerability of empagliflozin in patients with type 2 diabetes: Pooled analysis of phase I-III clinical trials. Adv Ther 2017; 34: 1707-26.

Peters AL, Buschur EO, Buse JB, Cohan P, Diner JC, Hirsch IB. Euglycemic diabetic ketoacidosis: A potential complication of treatment with sodium-glucose cotransporter 2 inhibition. Diabetes Care 2015; 38: 1687-93.

Yabe D, Iwasaki M, Kuwata H, Haraguchi T, Hamamoto Y, Kurose T, et al. Sodium-glucose co-transporter-2 inhibitor use and dietary carbohydrate intake in Japanese individuals with type 2 diabetes: A randomized, open-label, 3-arm parallel comparative, exploratory study. Diabetes Obes Metab 2017; 19: 739-43.

Scheen AJ. GLP-1 receptor agonists and heart failure in diabetes. Diabetes Metab 2017; 43(suppl 1): 2S13-9.

Marso SP, Daniels GH, Brown-Frandsen K, Kristensen P, Mann JF, Nauck MA, et al. Liraglutide and cardiovascular outcomes in type 2 diabetes. N Engl J Med 2016; 375: 311-22.

Pfeffer MA, Claggett B, Diaz R, Dickstein K, Gerstein HC, Køber LV et al. Lixisenatide in patients with type 2 diabetes and acute coronary syndrome. N Engl J Med 2015; 373: 2247-57.

Ismail-Beigi F, Moghissi E, Kosiborod M, Inzucchi SE. Shifting paradigms in the medical management of type 2 diabetes: reflections on recent cardiovascular outcome trials. J Gen Intern Med 2017; 32: 1044-51.

Kmietowicz Z. SGLT2 inhibitors for diabetes are linked to increased risk of lower limb amputation. BMJ 2018; 363: k4828.

Cruz J, Ahuja T, Bridgeman MB. Renal and Cardiac Implications of Sodium Glucose Cotransporter 2 (SGLT2) Inhibitors: The State of the Science. Ann Pharmacother 2018; 52: 1238-49.

Yuan Z, DeFalco FJ, Ryan PB, Schuemie MJ, Stang PE, Berlin JA, et al. Risk of lower extremity amputations in people with type 2 diabetes mellitus treated with sodium-glucose co-transporter-2 inhibitors in the USA: A retrospective cohort study. Diabetes Obes Metab 2018; 20: 582-9.

Scheen AJ. Does lower limb amputation concern all SGLT2 inhibitors? Nat Rev Endocrinol 2018; 14: 326-8.

Fadini GP, Avogaro A. SGLT2 inhibitors and amputations in the US FDA Adverse Event Reporting System. Lancet Diabetes Endocrinol 2017; 5: 680-1.

Tanaka A, Node K. Increased amputation risk with canagliflozin treatment: behind the large cardiovascular benefit? Cardiovasc Diabetol 2017; 16: 129.

Ryan PB, Buse JB, Schuemie MJ, DeFalco F, Yuan Z, Stang PE, et al. Comparative effectiveness of canagliflozin, SGLT2 inhibitors and non-SGLT2 inhibitors on the risk of hospitalization for heart failure and amputation in patients with type 2 diabetes mellitus: A real-world meta-analysis of 4 observational databases (OBSERVE-4D). Diabetes Obes Metab 2018; 20: 2585-97.

Gary T, Belaj K, Hafner F, Eller P, Rief P, Hackl G, et al. Critical limb ischemia score: a risk score for critical limb ischemia in peripheral arterial occlusive disease. Medicine (Baltimore) 2015; 94: e1054.

Levine JA, Kaihara KA, Layden BT, Wicksteed B. Long-term activation of PKA in β-cells provides sustained improvement to glucose control, insulin sensitivity and body weight. Islets 2016; 8: 125-34.

Nichols CG, Remedi MS. The diabetic β-cell: hyperstimulated vs. hyperexcited. Diabetes Obes Metab 2012; 14(Suppl 3): 129-35.

Salvi R, Abderrahmani A. Decompensation of β-cells in diabetes: when pancreatic β-cells are on ICE(R). J Diabetes Res 2014; 2014: 768024.

DeFronzo RA. Insulin resistance, lipotoxicity, type 2 diabetes and atherosclerosis: the missing links. The Claude Bernard Lecture 2009. Diabetologia 2010; 53: 1270-87.

Buse JB, Sesti G, Schmidt WE, Montanya E, Chang CT, Xu Y, Liraglutide Effect Action in Diabetes-6 Study Group. Switching to once-daily liraglutide from twice-daily exenatide further improves glycemic control in patients with type 2 diabetes using oral agents. Diabetes Care 2010; 33: 1300-3.

Papaetis GS. Incretin-based therapies in prediabetes: Current evidence and future perspectives. World J Diabetes 2014; 5: 817-34.

Bhavsar S, Mudaliar S, Cherrington A. Evolution of exenatide as a diabetes therapeutic. Curr Diabetes Rev 2013; 9: 161-93.

Kitazawa T, Yokoyama K, Kubota K. Combination therapy of glucagon-like peptide-1 receptor agonists and insulin for patients who developed diabetes after partial pancreatectomy. J Diabetes Investig 2016; 7: 381-5.

Lorenz M, Evers A, Wagner M. Recent progress and future options in the development of GLP-1 receptor agonists for the treatment of diabesity. Bioorg Med Chem Lett 2013; 23: 4011-8.

Abdulreda MH, Rodriguez-Diaz R, Caicedo A, Berggren PO. Liraglutide Compromises Pancreatic β Cell Function in a Humanized Mouse Model. Cell Metab 2016; 23: 541-6.

Erion KA, Corkey BE. Hyperinsulinemia: a cause of obesity? Curr Obes Rep 2017; 6: 178-86.

Czech MP. Insulin action and resistance in obesity and type 2 diabetes. Nat Med 2017; 23: 804-14.

Gamble JM, Simpson SH, Eurich DT, Majumdar SR, Johnson JA. Insulin use and increased risk of mortality in type 2 diabetes: a cohort study. Diabetes Obes Metab 2010; 12: 47-53.

Downloads

Published

2023-04-11

How to Cite

Jargin, S. V. (2023). Management of Type 2 Diabetes Mellitus with Overweight: Focus on SGLT-2 Inhibitors and GLP-1 Receptor Agonists. European Journal of Therapeutics, 25(2), 93–96. https://doi.org/10.5152/EurJTher.2019.18067

Issue

Section

Review Articles