Drug Resistance in Parasitic Diseases


Abstract views: 470 / PDF downloads: 128

Authors

  • Hatice Ertabaklar Department of Parasitology, Adnan Menderes University School of Medicine, Aydın, Turkey
  • Erdoğan Malatyalı Department of Parasitology, Adnan Menderes University School of Medicine, Aydın, Turkey
  • Sema Ertuğ Department of Parasitology, Adnan Menderes University School of Medicine, Aydın, Turkey

DOI:

https://doi.org/10.5152/eurjther.2019.18075

Keywords:

Chemotherapy, drug resistance, parasitic diseases

Abstract

Owing to the lack of or the ineffectiveness of vaccines for life-threatening parasitic diseases, chemotherapy is the current strategy to prevent parasitic diseases. Drug resistance disrupts chemotherapeutic options, thereby increasing the need for novel drugs in parasitological treatments. The most common resistance mechanisms are decreased drug uptake, export of drugs from parasites, genetic modifications, loss of drug activity, and alteration of the drug target. Drug resistance mechanisms should be well defined to develop new strategies to control parasitic diseases. This measure will ensure new effective treatment options for clinicians. In the recent years, isolation and characterization of resistance-related genes and proteins has considerably increased our knowledge. This review mostly focuses on new studies and common parasitic diseases.

Metrics

Metrics Loading ...

References

Torgerson PR, Devleesschauwer B, Praet N, Speybroeck N, Willingham AL, et al. World Health Organization estimates of the global and regional disease burden of 11 foodborne parasitic diseases, 2010: a data synthesis. PLoS Med 2015; 12: e1001920.

Andrews KT, Fisher G, Skinner-Adams TS. Drug repurposing and human parasitic protozoan diseases. Int J Parasitol Drugs Drug Resist 2014; 4: 95-111.

WHO. World Health Organization. Fact sheet on the World Malaria Report 2014. Available from: http://www.who.int/malaria/media/world_malaria_report_2014/en

Cooper RA, Hartwig CL, Ferdig MT. Pfcrt is more than the Plasmodium falciparum chloroquine resistance gene: a functional and evolutionary perspective. Acta Trop 2005; 94: 170-80.

Okell LC, Griffin JT, Roper C. Mapping sulphadoxine-pyrimethamine- resistant Plasmodium falciparum malaria in infected humans and in parasite populations in Africa. Sci Rep 2017; 7: 7389.

Takala Harrison S, Jacob CG, Arze C, Cummings MP, Silva JC, Dondorp AM, et al. Independent emergence of artemisinin resistance mutations among Plasmodium falciparum in Southeast Asia. J Inf Dis 2015; 211: 670-9.

Wang Z, Wang Y, Cabrera M, Zhang Y, Gupta B, Wu Y, et al. Artemisinin resistance at the China-Myanmar Border and association with mutations in the k13 propeller gene. Antimicrob Agents Chemother 2015; 59: 6952-9.

Li J, Chen J, Xie D, Monte Nguba SM, Eyi JU, Matesa RA, et al. High prevalence of pfmdr1 N86Y and Y184F mutations in Plasmodium falciparum isolates from Bioko Island, Equatorial Guinea. Pathog Global Health 2014; 108: 339-43.

Henry M, Briolant S, Zettor A, Pelleau S, Baragatti M, Baret E, et al. Plasmodium falciparum Na+/H+ exchanger 1 transporter is involved in reduced susceptibility to quinine. Antimicrob Agents Chemother 2009; 53: 1926-30.

Antony HA, Parija SC. Antimalarial drug resistance: an overview. Trop Parasitol 2016; 6: 30-41.

Reed MB, Saliba KJ, Caruana SR, Kirk K, Cowman AF. Pgh1 modulates sensitivity and resistance to multiple antimalarials in Plasmodium falciparum. Nature 2000; 403: 906-9.

Suwanarusk R, Chavchich M, Russell B, Jaidee A, Chalfein F, Barends M, et al. Amplification of pvmdr1 associated with multidrug-resistant Plasmodium vivax. J Infect Dis 2008; 198: 1558-64.

Nyunt MH, Han JH, Wang B, Aye KM, Aye KH, Lee SK, et al. Clinical and molecular surveillance of drug-resistant vivax malaria in Myanmar (2009-2016). Malar J 2017; 16: 117.

Montazeri M, Sharif M, Sarvi S, Mehrzadi S, Ahmadpour E, Daryani A. A systematic review of in vitro and in vivo activities of anti-Toxoplasma drugs and compounds (2006-2016). Front Microbiol 2017; 8: 25.

Silva LA, Reis-Cunha JL, Bartholomeu DC, Vítor RW. Genetic polymorphisms and phenotypic profiles of sulfadiazine-resistant and sensitive Toxoplasma gondii isolates obtained from newborns with congenital toxoplasmosis in Minas Gerais, Brazil. PloS One 2017; 12: e0170689.

Meneceur P, Bouldouyre MA, Aubert D, Villena I, Menotti J, Sauvage V, et al. In vitro susceptibility of various genotypic strains of Toxoplasma gondii to pyrimethamine, sulfadiazine, and atovaquone. Antimicrob Agents Chemother 2008; 52: 1269-77.

Baraka V, Ishengoma DS, Fransis F, Minja DTR, Madebe RA, Ngatunga D, et al. High-level Plasmodium falciparum sulfadoxine-pyrimethamine resistance with the concomitant occurrence of septuple haplotype in Tanzania. Malar J 2015; 14: 439.

Aspinall TV, Joynson DH, Guy E, Hyde JE, Sims PF. The molecular basis of sulfonamide resistance in Toxoplasma gondii and implications for the clinical management of toxoplasmosis. J Infect Dis 2002; 185: 1637-43.

Jeffers V, Kamau ET, Srinivasan AR, Harper J, Sankaran P, Post SE, et al. TgPRELID, a mitochondrial protein linked to multidrug resistance in the parasite Toxoplasma gondii. mSphere 2017; 2: e00229.

Leta S, Dao TH, Mesele F, Alemayehu G. Visceral leishmaniasis in Ethiopia: an evolving disease. PLoS Neg Trop Dis 2014; 8: e3131.

Radmanesh M, Omidian E. The pulsed dye laser is more effective and rapidly acting than intralesional meglumine antimoniate therapy for cutaneous leishmaniasis. J Dermatolog Treat 2017; 28: 422-5.

Kazemi-Rad E, Mohebali M, Khadem-Erfan MB, Hajjaran H, Hadighi R, Khamesipour A, et al. Overexpression of ubiquitin and amino acid permease genes in association with antimony resistance in Leishmania tropica field isolates. Korean J Parasitol 2013; 51: 413-9.

Kazemi-Rad E, Mohebali M, Khadem-Erfan MB, Saffari M, Raoofian R, Hajjaran H, et al. Identification of antimony resistance markers in Leishmania tropica field isolates through a cDNA-AFLP approach. Exp Parasitol 2013; 135: 344-9.

Barrera MC, Rojas LJ, Weiss A, Fernandez O, McMahon Pratt D, Saravia NG, et al. Profiling gene expression of antimony response genes in Leishmania (Viannia) panamensis and infected macrophages and its relationship with drug susceptibility. Acta Trop 2017; 176: 355-63.

Lane S, Lloyd D. Current trends in research into the waterborne parasite Giardia. Crit Rev Microbiol 2002; 28: 123-47.

Gardner TB, Hill DR. Treatment of giardiasis. Clin Microbiol Rev 2001; 14: 114-28.

Galeh TM, Kazemi A, Mahami-Oskouei M, Baradaran B, Spotin A, Sarafraz S, et al. Introducing nitazoxanide as a promising alternative treatment for symptomatic to metronidazole-resistant giardiasis in clinical isolates. Asian Pac J Trop Med 2016; 9: 887-92.

Löfmark S, Edlund C, Nord CE. Metronidazole is still the drug of choice for treatment of anaerobic infections. Clin Infect Dis 2010; 50(Suppl): S16-23.

Wassmann C, Hellberg A, Tannich E, Bruchhaus I. Metronidazole resistance in the protozoan parasite Entamoeba histolytica is associated with increased expression of iron-containing superoxide dismutase and peroxiredoxin and decreased expression of ferredoxin 1 and flavin reductase. J Biol Chem 1999; 274: 26051-6.

Ertabaklar H, Yaman Karadam S, Malatyalı E, Ertuğ S. Investigation of in vitro metronidazole resistance in the clinical isolates of Trichomonas vaginalis. Mikrobiyol Bul 2016; 50: 552-8.

Bouchemal K, Bories C, Loiseau PM. Strategies for prevention and treatment of Trichomonas vaginalis infections. Clin Microbiol Rew 2017; 30: 811-25.

Bradic M, Warring SD, Tooley GE, Scheid P, Secor WE, Land KM, et al. Genetic indicators of drug resistance in the highly repetitive genome of Trichomonas vaginalis. Genome Biol Evol 2017; 9: 1658-72.

Massara CL, Enk MJ. Treatment options in the management of Ascaris lumbricoides. Expert Opin Pharmacother 2004; 5: 529-39.

Krücken J, Fraundorfer K, Mugisha JC, Ramünke S, Sifft KC, Geus D, et al. Reduced efficacy of albendazole against Ascaris lumbricoides in Rwandan schoolchildren. Int J Parasitol Drugs Drug Resist 2017; 7: 262-71.

Rashwan N, Scott M, Prichard R. Rapid genotyping of β-tubulin polymorphisms in Trichuris trichiura and Ascaris lumbricoides. PLoS Negl Trop Dis 2017; 11: e0005205.

Durand R, Bouvresse S, Berdjane Z, Izri A, Chosidow O, Clark JM. Insecticide resistance in head lice: clinical, parasitological and genetic aspects. Clin Microbiol Infect 2012; 18: 338-44.

Clark JM, Yoon KS, Kim JH, Lee SH, Pittendrigh BR. Utilization of the human louse genome to study insecticide resistance and innate immune response. Pest Biochem Physiol 2015; 120: 125-32.

Gellatly KJ, Krim S, Palenchar DJ, Shepherd K, Yoon KS, Rhodes CJ, et al. Expansion of the knockdown resistance frequency map for human head lice (Phthiraptera: Pediculidae) in the United States using quantitative sequencing. J Med Entomol 2016; 53: 653-9.

Thomas J, Peterson GM, Walton SF, Carson CF, Naunton M, Baby KE. Scabies: an ancient global disease with a need for new therapies. BMC Infect Dis 2015; 15: 250.

Andriantsoanirina V, Izri A, Botterel F, Foulet F, Chosidow O, Durand R. Molecular survey of knockdown resistance to pyrethroids in human scabies mites. Clin Microbiol Infect 2014; 20: 139-4.

Downloads

Published

2023-04-02

How to Cite

Ertabaklar, H., Malatyalı, E., & Ertuğ, S. (2023). Drug Resistance in Parasitic Diseases. European Journal of Therapeutics, 26(1), 1–5. https://doi.org/10.5152/eurjther.2019.18075

Issue

Section

Review Articles