The Effect of Smoking on Gingival Crevicular Fluid Sclerostin and TNF-Α Levels in Patient with Periodontitis
Abstract views: 78 / PDF downloads: 19
DOI:
https://doi.org/10.58600/eurjther2370Keywords:
Gingival fluid, , Periodontitis, , Smoking, Sklerostin, TNF-αAbstract
Objective: The objective of this study was to evaluate the impact of cigarette smoking on sclerostin and TNF-α levels in subjects exhibiting periodontally healthy conditions and those afflicted with periodontitis. The hypothesis tested was that sclerostin levels in smokers could serve as a diagnostic marker and a tool to assess the progression of the disease.
Methods: In the present study, gingival crevicular fluid samples were obtained from a total of 72 patients, who were divided into four distinct groups: a control group of 18 non-smoking individuals without periodontitis, a group of 18 non-smoking individuals with periodontitis, a group of 18 healthy individuals who smoked, and a group of 18 smokers with periodontitis. The levels of sclerostin and TNF-α were then evaluated using the enzyme-linked immunosorbent assay (ELISA) method.
Results: The findings indicated a positive correlation between sclerostin and TNF-α levels in the gingival fluid of individuals diagnosed with periodontal disease.Subsequent evaluations of the relationship between smoking and these biomarkers revealed a statistically significant increase in TNF-α levels, while the increase in sclerostin levels did not attain statistical significance. However, when the analyses were performed without taking into account age-related effects within groups (adjusted for age), a statistically significant increase in sclerostin levels due to smoking was observed.
Conclusion: In conclusion, it can be posited that the measurement of TNF-α levels in smokers may serve as a biomarker for the diagnosis and progression of the disease. Further studies are required to determine the role of sclerostin in this context.
Metrics
References
Lindhe J, Karring T, Araujo M, Lang NP (2015) Anatomy of Periodontal Tissues. Clinical Periodontology and Implant Dentistry. John Wiley&Sons, West Sussex; s. 3-47. https://doi.org/10.56373/2009-3-24
Smeda-Pienaar K, Kaambo E, Africa CWJ (2017) Bacterial morphotype grading for periodontal disease assessment. Bdj Open. 3(1). https://doi.org/10.1038/bdjopen.2016.11.
Kinane DF, Podmore M, Murray MC, Hodge PJ, Ebersole J (2001) Etiopathogenesis of periodontitis in children and adolescents. Periodontol 2000. 26(1):54–91. https://doi.org/10.1034/j.1600-0757.2001.2260104.x.
Salhi L, Hazout S, Van Hede D, Lambert F, Charlier C, Deville M (2024) Establishment of a Quantitative Method for the Extraction of Nicotine and Cotinine in Gingival Tissue and Relationship Between Gingival Intoxication With Conventional Smoking Biomarkers: A Pilot Study, Clin. Exp. Dent. Res. 10(6). https://doi.org/10.1002/cre2.70022.
Grossi SG, Skrepcinski FB, DeCaro T, Zambon JJ, Cummins D, Genco RJ (1996) Response to periodontal therapy in diabetics and smokers. J Periodontol. 67(10):1094–1102. https://doi.org/10.1902/jop.1996.67.10s.1094.
Danielsen B, Manji F, Nagelkerke N, Fejerskov O, Baelum V (1990) Effect of cigarette smoking on the transition dynamics in experimental gingivitis. J Clin Periodontol. 17(3):159-64. https://doi.org/10.1111/j.1600-051X.1990.tb01080.x.
Bergström J. (1990). Oral hygiene compliance and gingivitis expression in cigarette smokers. Eur. J. Oral Sci, 98(6), 497-503. https://doi.org/10.1111/j.1600-0722.1990.tb01004.x.
Qiu F, Liang CL, Liu H, Zeng YQ, Hou S, Huang S, Lai X, Dai Z (2017) Impacts of cigarette smoking on immune responsiveness: Up and down or upside down? Oncotarget, 8(1):268-284. https://doi.org/10.18632/oncotarget.13613
Salvi G, Lawrence H, Offenbacher S, Beck J. (1997) Influence of risk factors on the pathogenesis of periodontitis. Periodontol 2000. 14(259):173–201. https://doi.org/10.1111/j.1600-0757.1997.tb00197.x.
Haber J, Wattles J, Crowley M, Mandell R (1993) Evidence for cigarette smoking as a major risk factor for periodontitis. J Periodontol 64(1):6-23. https://doi.org/10.1902/jop.1993.64.1.16.
Cuff MJ, McQuade MJ, Scheidt MJ, Sutherland DE, Van Dyke TE (1989) The presence of nicotine on root surfaces of periodontally diseased teeth in smokers. J Periodontol. 60(10):564–569. https://doi.org/10.1902/jop.1989.60.10.564.
Ismail AI, Burt BA, Eklund SA (1983) Epidemiologic patterns of smoking and periodontal disease in the United States. J Am Dent Assoc. 106(5):617– 621. https://doi.org/10.14219/jada.archive.1983.0137.
Xu Y, Gao C, He J, Gu W, Yi C, Chen B, Wang Q, Tang F, Xu J, Yue H, Zhang Z (2020) Sclerostin and Its Associations With Bone Metabolism Markers and Sex Hormones in Healthy Community-Dwelling Elderly Individuals and Adolescents. Front Cell Dev Biol. 7(8):57. doi: 10.3389/fcell.2020.00057
Assuma R, Oates T, Cochran D, Amar S, Graves D (1998) IL-1 and TNF antagonists inhibit the inflammatory response and bone loss in experimental periodontitis. J Immunol. 160(1):403-9. http://dx.doi.org/10.4049/jimmunol.160.1.403
Brunkow ME, Gardner JC, Van Ness J, Paeper BW, Kovacevich BR, Proll S, et al. (2001) Bone dysplasia sclerosteosis results from loss of the SOST gene product, a novel cystine knot-containing protein. AJHG 68(3):577-89. doi: 10.1086/318811.
Robinson JA, Chatterjee-Kishore M, Yaworsky PJ, Cullen DM, Zhao W, Li C, et al. (2006) Wnt/beta-catenin signaling is a normal physiological response to mechanical loading in bone. JBC 281(42):31720-8. https://doi.org/10.3390/ijms21031146.
Balli U, Aydogdu A, Dede FO, Turer CC, Guven B (2015) Gingival Crevicular Fluid Levels of Sclerostin, Osteoprotegerin, and Receptor Activator of Nuclear Factor-κB Ligand in Periodontitis. J Periodontol. 86(12):1396-404. https://doi.org/10.1902/jop.2015.
Rakic M, Struillou X, Petkovic-Curcin A, Matic S, Canullo L, Sanz M, et al. (2014) Estimation of bone loss biomarkers as a diagnostic tool for peri-implantitis. J. Periodontol. 85(11):1566-74. https://doi.org/10.1902/jop.2014.140069.
Taut AD, Jin Q, Chung JH, Galindo-Moreno P, Yi ES, Sugai JV, Ke HZ, Liu M, Giannobile WV (2013) Sclerostin antibody stimulates bone regeneration after experimental periodontitis. J Bone Miner Res. 28(11):2347-56. https://doi.org/10.1002/jbmr.1984.
Chen H, Xu X, Liu M, Zhang W, Ke HZ, Qin A, Tang T, Lu E (2015) Sclerostin antibody treatment causes greater alveolar crest height and bone mass in an ovariectomized rat model of localized periodontitis. Bone. 76:141-8. https://doi.org/10.1016/j.bone.2.
N. Ashifa, K. Viswanathan, S. Srinivasan, S. Kumar, R. Sundaram, V.K. Pavithran (2023) Assessment of sclerostin levels in the gingival crevicular fluid of patients with periodontitis: A clinico-biochemical crosssectional study., J. Adv. Periodontol. Implant Dent. 27;15(1):3–9. https://doi.org/10.34172/japid.2023.009.
Nakamura K, Koide M, Kobayashi Y, et al. (2023) Sclerostin deficiency effectively promotes bone morphogenetic protein-2-induced ectopic bone formation. J Periodont Res. 58:769-779. doi:10.1111/jre.13134.
Page RC (1991) The role of inflammatory mediators in the pathogenesis of periodontal disease. J Periodontal Res. 26(3 Pt 2):230-42. https://doi.org/10.1111/j.1600-0765.1991.tb01649.x.
Afacan B, Öztürk VÖ, Paşalı Ç, Bozkurt E, Köse T, Emingil G (2019) Gingival crevicular fluid and salivary HIF-1α, VEGF, and TNF-α levels in periodontal health and disease. J Periodontol. 90(7):788-797. https://doi.org/10.1002/JPER.18-0412.
Yavuz MC, Pekbağriyanik T, Sağlam M, Köseoğlu S (2019) Evaluation of milk fat globule-epidermal growth factor-factor VIII and IL-1β levels in gingival crevicular fluid and saliva in periodontal disease and health. Odontology.107(4):449-456. https://doi.org/10.1007/s10266-019-00419-5
Heasman PA, Collins JG, Offenbacher S (1993) Changes in crevicular, leukotriene B (fluid levels of interleukin-14 ), prostaglandin E2, thromboxane B2 in experimental and tumour necrosis factor gingivitis in humans. J Periodontal Res. 28(4):241–7. http://dx.doi.org/10.1111/j.1600-0765.1993.tb02090.x
Stashenko P, Jandinski JJ, Fujiyoshi P, et al. (1991) Tissue levels of bone resorptive cytokines in periodontal disease. J Periodontol. 62:504-509. https://doi.org/10.1902/jop.1991.62.8.504.
C.M. Bernaards, J.W. Twisk, J. Snel, W. Van Mechelen, H.C. Kemper (2001) Is calculating pack-years retrospectively a valid method to estimate life-time tobacco smoking? A comparison between prospectively calculated pack-years and retrospectively calculated pack-years., Addiction. 96(11):1653–61. https://doi.org/10.1046/j.1360-0443.2001.9611165311.x.
Pérez-Stable EJ, Marín G, Marín BV, Benowitz NL (1992) Misclassification of smoking status by self-reported cigarette consumption. Am Rev Respir Dis. 145(1):53–57. https://doi.org/10.1164/ajrccm/145.1.53.
Caton J, Armitage G, Berglundh T, et al. (2018) A new classification scheme for periodontal and peri-implant diseases and conditions – Introduction and key changes from the 1999 classification. J Clin Periodontol. 45(Suppl 20): S1–S8. http://dx.doi.org/10.1002/jper.18-0157
Silness J, & Löe H (1964) Periodontal Disease in Pregnancy II. Correlation Between Oral Hygiene and Periodontal Condition. Acta Odontologica Scandinavica. 22(1), 121–135. https://doi.org/10.3109/00016356408993968.
Carranza FA. Clinical diagnosis. In: Carranza’s Clinical Periodontology. 9th Edition. W.B. Saunders Company, Philedelphia 2002; p.432–453.
Loe H, Silness J (1963) Periodontal Disease in Pregnancy I. Prevalence and Severity. Acta Odontol Scand. 21(6):533–551. https://doi.org/10.3109/00016356408993968.
Cimasoni G (1983) Crevicular fluid updated. In: Monographs in Oral Science. Karger, Basel. 12:1-121.
Griffiths GS (2003) Formation, collection and significance of gingival crevice fluid. Periodontol 2000, 31;31(1):32–42. https://doi.org/10.1034/j.1600-0757.2003.03103.x.
Grossi SG, Genco RJ, Machtei EE, Ho AW, Koch G, Dunford R, Zambon JJ, Hausman E (1995) Assessment of risk for periodontal disease. II. Risk indicators for alveolar bone loss. J Periodontol. 66(1):23–29. https://doi.org/10.1902/jop.1995.66.1.23.
Kenney EB, Kraal JH, Saxe SR, Jones J (1977) The effect of cigarette smoke on human oral polymorphonuclear leukocytes. J Periodontal Res. 12(4):227-34. https://doi.org/10.1111/j.1600-0765.1977.tb00126.x.
Pabst MJ, Pabst KM, Collier JA, Coleman TC, Lemons-Prince ML, Godat MS, Waring MB, Babu JP (1995) Inhibition of Neutrophil and Monocyte Defensive Functions by Nicotine. J Periodontol. 66(12):1047–1055. https://doi.org/10.1902/jop.1995.66.12.1047.
Chatzopoulos GS, Mansky KC, Lunos S, Costalonga M, Wolff LF (2019) Sclerostin and WNT-5a gingival protein levels in chronic periodontitis and health. J Periodont Res. 54: 555–565. https://doi.org/10.1111/jre.12659.
Heiland GR, Zwerina K, Baum W, Kireva T, Distler JH, Grisanti M, et al. (2010) Neutralisation of Dkk-1 protects from systemic bone loss during inflammation and reduces sclerostin expression. Ann Rheum Dis 69:2152e9. https://doi.org/10.1136/ard.2010.132852.
Ruscitti P, Cipriani P, Carubbi F, Liakouli V, Zazzeroni F, Di Benedetto P, et al. (2015) The role of IL-1b in the bone loss during rheumatic diseases. Mediat Inflamm 2015(1). https://doi.org/10.1155/2015/782382.
Baek K, Hwang HR, Park HJ, Kwon A, Qadir AS, Ko SH, et al. (2014) TNF-a upregulates sclerostin expression in obese mice fed a high-fat diet. J Cell Physiol 21;229(5):640–50. https://doi.org/10.1002/jcp.24487.
Ren Y, Han X, Ho SP, Harris SE, Cao Z, Economides AN, Qin C, Ke H, Liu M, Feng JQ (2015) Removal of SOST or blocking its product sclerostin rescues defects in the periodontitis mouse model. FASEB J. 10;29(7):2702–11. https://doi.org/10.1096/fj.14-265496.
Gür B, Afacan B, Çevik Ö, Köse T, Emingil G (2023) Gingival crevicular fluid periodontal ligament-associated protein-1, sclerostin, and tumor necrosis factor-alpha levels in periodontitis. J Periodontol. 94:1166–1175. https://doi.org/10.1002/JPER.22-0750.
Yakar N, Guncu GN, Akman AC, Pınar A, Karabulut E, Nohutcu RM (2019) Evaluation of gingival crevicular fluid and peri-implant crevicular fluid levels of sclerostin, TWEAK, RANKL and OPG. Cytokine. 113:433-439. https://doi.org/10.1016/j.cyto.2018.10.021
Downloads
Published
How to Cite
License
Copyright (c) 2024 European Journal of Therapeutics
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
The content of this journal is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Funding data
-
Gaziantep Üniversitesi
Grant numbers GAZİANTEP ÜNİVERSİTESİ ARAŞTIRMA PROJELERİ YÖNETİM BİRİMİ Proje No: DHF.UT.19.10