Effect of Vitamin K2 on Blood Rheology and Vascular Responses in Diabetic Rats


Abstract views: 170 / PDF downloads: 93

Authors

DOI:

https://doi.org/10.58600/eurjther2214

Keywords:

Diabetes Mellitus, Vitamin K2, Menaquinone-7, Endothelial dysfunction

Abstract

Background/aim: Diabetes is manifested by endothelial dysfunction and an imbalance between vasoconstriction and vasodilation. The aim of our study is to examine the effect of vitK2 application on vascular and rheological parameters in a rat diabetes model.

Materials and methods: A total of 60 male Wistar Albino rats were used to examine vascular responses and hemorheological parameters. A total of 6 groups were: control (C), control+vehicle (Cv), control+vitK2 administered (C + K2), diabetes (D), diabetes+vehicle (Dv), and diabetes+vitK2 (D + K2) group. After the animals were sacrificed, blood and vascular samples were taken and the contraction and relaxation responses of the aorta and erythrocyte deformability and aggregation were examined.

Results: When KCl dose-response curves are evaluated; Increased vasoconstriction response was found in the Dv group compared to the Cv group. The increase in vasoconstriction observed in the Dv group decreased with the application of vit K2. D+vitK2 group thoracic aorta contraction responses returned to Cv group levels. In response to increasing cumulative doses of Phe, a significant increase in vasoconstriction response was observed in the Dv group compared to the Cv group. VitK2 application reduced the Phe-mediated contractile response, which was increased in the Dv group, and returned the contraction response to Cv conditions except for two intermediate Phe doses. In the Dv + K2 group, a significant decrease was observed in the aggregation index, which was tended to increase.

Conclusion: Considering the cardiovascular complications frequently observed in diabetes, it can be suggested that vitK2 therapy may yield positive outcomes in diabetes.

Metrics

Metrics Loading ...

References

Hu FB (2011) Globalization of diabetes: the role of diet, lifestyle, and genes. Diabetes Care. 34(6):1249-1257. https://doi:10.2337/dc11-0442

Avogaro A, Piarulli F, Valerio A et al (1997) Forearm nitric oxide balance, vascular relaxation, and glucose metabolism in NIDDM patients. Diabetes. 46(6):1040-1046. https://doi:10.2337/diab.46.6.1040

Hogikyan RV, Galecki AT, Pitt B et al (1998) Specific impairment of endothelium-dependent vasodilation in subjects with type 2 diabetes independent of obesity. J Clin Endocrinol Metab. 83(6):1946-1952. https://doi:10.1210/jcem.83.6.4907

Leung SW, Vanhoutte PM (2017) Endothelium-dependent hyperpolarization: age,gender and blood pressure, do they matter? Acta Physiol (Oxf). 219(1):108-123. https://doi:10.1111/apha.12628

Shimokawa H (2014) 2014 Williams Harvey Lecture: importance of coronary vasomotion abnormalities-from bench to bedside. Eur Heart J. 35(45):3180-3193. https://doi:10.1093/eurheartj/ehu427

Lobato NS, Filgueira FP, Akamine EH et al (2012) Mechanisms of endothelial dysfunction in obesity-associated hypertension. Braz J Med Biol Res. 45(5):392-400. https://doi:10.1590/s0100-879x2012007500058

Moncada S, Higgs A (1993) The L-arginine-nitric oxide pathway. N Engl J Med. 329(27):2002-2012. https://doi:10.1056/NEJM199312303292706

Yan Q, Zhang T, O'Connor C et al (2023) The biological responses of vitamin K2: A comprehensive review. Food Sci Nutr. 11(4):1634-1656. https://doi:10.1002/fsn3.3213

Yamauchi T, Kamon J, Waki H, et al (2003) Globular adiponectin protected ob/ob mice from diabetes and ApoE-deficient mice from atherosclerosis. J Biol Chem. 278(4):2461-2468. https://doi:10.1074/jbc.M209033200

Kubota N, Terauchi Y, Yamauchi T et al (2002) Disruption of adiponectin causes insulin resistance and neointimal formation. J Biol Chem. 277(29):25863-25866. https://doi:10.1074/jbc.C200251200

Lee NK, Sowa H, Hinoi E et al (2007) Endocrine regulation of energy metabolism by the skeleton. Cell. 130(3):456-469. https://doi:10.1016/j.cell.2007.05.047

Beulens JWJ, Booth SL, van den Heuvel EGHM et al (2013) The role of menaquinones (vitamin K) in human health. Br J Nutr. 110(8):1357-1368. https://doi:10.1017/S0007114513001013

Mehta D, de Souza A, Jadhav SS (2022) Menaquinone-7: Wide Ranging Physiological Relevance in Muscle and Nerve Health. Vitamin K-Recent Topics on the Biology and Chemistry Eds, 2021, 57-76.

Bar A, Kus K, Manterys A et al (2019) Vitamin K(2)-MK-7 improves nitric oxide-dependent endothelial function in ApoE/LDLR(-/-) mice. Vascul Pharmacol. 122-123:106581. https://doi:10.1016/j.vph.2019.106581

Ho HJ, Komai M, Shirakawa H (2020) Beneficial effects of Vitamin K status on glycemic regulation and diabetes mellitus: A Mini-Review. Nutrients. 12(8):2485. https://doi:10.3390/nu12082485

Choi HJ, Yu J, Choi H et al (2011) Vitamin K2 supplementation improves insulin sensitivity via osteocalcin metabolism: a placebo-controlled trial. Diabetes Care. 34(9):e147. https://doi:10.2337/dc11-0551

Mandatori D, Pelusi L, Schiavone V et al (2021) The dual role of Vitamin K2 in "Bone-Vascular Crosstalk": opposite effects on bone loss and vascular calcification. Nutrients. 13(4):1222. https://doi:10.3390/nu13041222

Wu KK, Huan Y (2008) Streptozotocin-induced diabetic models inmice and rats. Curr Protoc Pharmacol. 5(47). https://doi:10.1002/0471141755.ph0547s40

Gancheva SM, Zhelyazkova-Savova MD (2016) Vitamin K2 ımproves anxiety and depression but not cognition in rats with metabolic syndrome: a role of blood glucose? Folia Med (Plovdiv). 58(4):264-272. https://doi:10.1515/folmed-2016-0032

Mahmoud M, Kokozidou M, Gogele C et al (2023) Does Vitamin K2 ınfluence the ınterplay between diabetes mellitus and ıntervertebral disc degeneration in a rat model? Nutrients. 15(13):2872. https://doi:10.3390/nu15132872

Hussein AG, Mohamed RH, Shalaby SM et al (2018) Vitamin K(2) alleviates type 2 diabetes in rats by induction of osteocalcin gene expression. Nutrition. 47:33-38. https://doi:10.1016/j.nut.2017.09.016

Gaertner S, Auger C, Farooq MA et al (2020) Oral intake of EPA:DHA 6:1 by middle-aged rats for one week ımproves age-related endothelial dysfunction in both the femoral artery and vein: role of cyclooxygenases. Int J Mol Sci. 21(3):920. https://doi:10.3390/ijms21030920

Zwakenberg SR, de Jong PA, Bartstra JW et al (2019) The effect of menaquinone-7 supplementation on vascular calcification in patients with diabetes: a randomized, double-blind, placebo-controlled trial. Am J Clin Nutr. 110(4):883-890. https://doi:10.1093/ajcn/nqz147

Meer R, Romero Prats ML, Vervloet MG et al (2023) The effect of six-month oral vitamin K supplementation on calcification propensity time in individuals with type 2 diabetes mellitus: A post hoc analysis of a randomized, double-blind, placebo-controlled trial. Atherosclerosis. 117307. https://doi:10.1016/j.atherosclerosis.2023.117307

Gast GC, de Roos NM, Sluijs I, et al (2009) A high menaquinone intake reduces the incidence of coronary heart disease. Nutr Metab Cardiovasc Dis. 19(7), 504-510. https://doi:10.1016/j.numecd.2008.10.004

Wang ZJ, Wang ZQ, Zhu J et al (2018) Vitamin K2 can suppress the expression of Toll-like receptor 2 (TLR2) and TLR4, and inhibit calcification of aortic intima in ApoE mice as well as smooth muscle cells. Vascular. 26(1):18-26. https://doi:10.1177/1708538117713395

Downloads

Published

2024-08-07

How to Cite

Ozturk Bostancı, S., Özen, N., Alkan, E., Güzelad, Özge, Salım, H., Yıldırım, A., Ülker , P., Basralı , F., Erbaş, D., & Sindel, M. (2024). Effect of Vitamin K2 on Blood Rheology and Vascular Responses in Diabetic Rats. European Journal of Therapeutics, 30(5), 739–749. https://doi.org/10.58600/eurjther2214

Issue

Section

Original Articles

Categories

Funding data