Effects of Pinealectomy and Melatonin Supplementation on Elements Metabolism in Rat Testicular Tissue


Abstract views: 242 / PDF downloads: 617

Authors

DOI:

https://doi.org/10.58600/eurjther2125

Keywords:

Pinealectomy, melatonin administration, testicular elemental metabolism, rat

Abstract

Objective: The aim of this study was to investigate how pinealectomy and melatonin application affect elements metabolism in rat testicular tissue.

Methods: The study was carried out on 32 adult male Spraque-Dawley rats. Animals were divided into 4 equal groups. Group 1: Control, Group 2: Melatonin, Group 3: Pinealectomy, Group 4: Pinealectomy+Melatonin. Group 2 and 4 animals received daily 3mg/kg intraperitoneal (ip) melatonin supplementation for 4 weeks. The pineal glands of Group 3 and 4 animals were removed under general anesthesia. At the end of the applications, testicular tissue samples were taken from the animals sacrificed under general anesthesia. Elemental determinations (µg/gram/tissue) were performed in testicular tissue samples using the atomic emission method.

Results: The highest cobalt, molybdenum, nickel, manganese, phosphorus, and sodium levels (p<0.001) and the lowest potassium levels in the testicular tissue were obtained in the pinealectomy group (group 3) (p<0.001). Magnesium and selenium values in testicular tissue were highest in the pinealectomy group (group 3) (p<0.001), and were higher in the pinealectomy+melatonin group (group 4) than ingroup 1 (control) and group 2 (melatonin) (p<0.001). Testicular zinc levels were highest in group 2, where melatonin was administered, and lowest in group 3, which was the pinealectomy group (p<0.001).

Conclusion: The findings obtained as a result of the study show that pinealectomy significantly disrupts element metabolism in the testicular tissue of rats, and melatonin supplementation may have a regulatory effect on testicular elemental metabolism.

Metrics

Metrics Loading ...

References

Ghorbani F, Karimi S, Boustan A, Ebrahimzadeh-Bideskan A, Saburi E (2023) Effect of melatonin on male offspring testis and sperm parameters in BALB/c mice after exposing their mother to METHamphetamine during pregnancy and lactation. Iran J Basic Med Sci 26(7):777-784. https://doi.org/10.22038/IJBMS.2023.69608.15158

Joseph TT, Schuch V, Hossack DJ, Chakraborty R, Johnson EL (2024) Melatonin: the placental antioxidant and anti-inflammatory. Front Immunol 15:1339304. https://doi.org/10.3389/fimmu.2024.1339304

Uğurlu AK, Bideci A, Demirel AM, Kaplanoğlu GT, Dayanır D, Gülbahar Ö, Bulut TSD, Döğer E, Çamurdan MO (2023) Is blue light exposure a cause of precocious puberty in male rats? Front Endocrinol (Lausanne) 14:1190445. https://doi.org/10.3389/fendo.2023.1190445

Li C, Zhou X (2015) Melatonin and male reproduction. Clin Chim Acta 446:175-180. https://doi.org/10.1016/j.cca.2015.04.029.

Zhang Y, Liu X, Bai X, Lin Y, Li Z, Fu J, Li M, Zhao T, Yang H, Xu R, Li J, Ju J, Cai B, Xu C, Yang B (2018) Melatonin prevents endothelial cell pyroptosis via regulation of long noncoding RNA MEG3/miR-223/NLRP3 axis. J Pineal Res 64(2). https://doi.org/10.1111/jpi.12449

Zhang T, Zhou Y, Li L, Zhao Y, De Felici M, Reiter RJ, Shen W (2018) Melatonin protects prepuberal testis from deleterious effects of bisphenol A or diethylhexyl phthalate by preserving H3K9 methylation. J Pineal Res 65(2):e12497. https://doi.org/10.1111/jpi.12497

Cao M, Wang Y, Yang F, Li J, Qin X (2021) Melatonin rescues the reproductive toxicity of low-dose glyphosate-based herbicide during mouse oocyte maturation via the GPER signaling pathway. J Pineal Res 70(3):e12718. https://doi.org/10.1111/jpi.12718

Miao Z, Miao Z, Teng X, Xu S (2022) Melatonin alleviates lead-induced intestinal epithelial cell pyroptosis in the common carps (Cyprinus carpio) via miR-17-5p/TXNIP axis. Fish Shellfish Immunol 131:127-136. https://doi.org/10.1016/j.fsi.2022.09.071

Zhang B, Zhong Y, Du J, Ye R, Fan B, Deng Y, Bai R, Feng Y, Yang X, Huang Y, Liang B, Zheng J, Rong W, Yang X, Huang Z [2024) 1,2-Dichloroethane induces testicular pyroptosis by activating piR-mmu-1019957/IRF7 pathway and the protective effects of melatonin. Environ Int 184:108480. https://doi.org/10.1016/j.envint.2024.108480

Heidarizadi S, Rashidi Z, Jalili C, Gholami M (2022) Overview of biological effects of melatonin on testis: A review. Andrologia 54(11):e14597. https://doi.org/10.1111/and.14597

Semercioz A, Baltaci AK, Mogulkoc R, Avunduk MC (2017) Effect of zinc and melatonin on oxidative stress and serum Inhibin-B levels in a rat testicular torsion-detorsion model. Biochem Genet 55(5-6):395-409. https://doi.org/10.1007/s10528-017-9826-5

Baltaci AK, Mogulkoc R, Baltaci SB (2019) Review: The role of zinc in the endocrine system. Pak J Pharm Sci 2019 ;32(1):231-239.

Li T, Lv Y, Wu Z, Guo M, Liu R, Zeng W, Zheng Y (2023) Systematic assessment of hexavalent chromium-induced damage to male fertility and the preventive role of melatonin: a longitudinal study from the translational point of view. Mol Hum Reprod 2023;29(7):gaad020. https://doi.org/10.1093/molehr/gaad020

Baş E, Nazıroğlu M (2019) Treatment with melatonin and selenium attenuates docetaxel-induced apoptosis and oxidative injury in kidney and testes of mice. Andrologia. 51(8):e13320. https://doi.org/10.1111/and.13320.

Tuncer I, Sunar F, Toy H, Baltaci AK, Mogulkoc R (2011) Histological effects of zinc and melatonin on rat testes. Bratisl Lek Listy. 2011;112(8):425-427.

Kuszack J, Rodin MA (1977) New technique of pinealectomy for adult rats. Pro Experimentis 32:283-284. https://doi.org/10.1007/BF02124114.

Boguszewska A, Pasternak K (2024) [Melatonin and bio-elements]. Pol Merkur Lekarski 17(101):528-529.

Cemek M, Emin Büyükokuroğlu M, Yürümez Y, Yavuz Y, Aslan A, Büyükben A, Aymelek F (2010) Tissue trace and major element levels in organophosphate insecticide fenthion (Lebaycid) toxicity in rats: prophylactic and therapeutic effect of exogenous melatonin. Ecotoxicol Environ Saf 73(2):206-212. https://doi.org/10.1016/j.ecoenv.2009.09.008

Turgut M, Yenisey C, Bozkurt M, Ergin FA, Biçakçi T (2006) Analysis of zinc and magnesium levels in pinealectomized chicks: roles on development of spinal deformity? Biol Trace Elem Res 113(1):67-75. https://doi.org/10.1385/BTER:113:1:67

Mogulkoc R, Baltaci AK (2008) The effect of pinealectomy on plasma vasopressin response to isotonic, hypertonic and hypovolemic treatments in rats supplemented with L-thyroxine. Acta Biol Hung 2008 59(2):163-72. https://doi.org/10.1556/ABiol.59.2008.2.3

Te L, Liu J, Ma J, Wang S (2023) Correlation between serum zinc and testosterone: A systematic review. J Trace Elem Med Biol 76:127124. https://doi.org/10.1016/j.jtemb.2022.127124.

Skalny AV, Aschner M, Tinkov AA (2021) Zinc. Adv Food Nutr Res 296:251-310. https://doi.org/10.1016/bs.afnr.2021.01.003.

Osadchuk LV, Danilenko AD, Osadchuk AV (2021) An influence of zinc on male infertility. Urologiia (5):84-93.

Ozturk A, Baltaci AK, Bediz CS, Mogulkoc R (2003) Güngör S. Effects of zinc and melatonin deficiency on testicular tissue of rats. Biol Trace Elem Res 96(1-3):255-62. https://doi.org/10.1385/BTER:96:1-3:255.

Vickram S, Rohini K, Srinivasan S, Nancy Veenakumari D, Archana K, Anbarasu K, Jeyanthi P, Thanigaivel S, Gulothungan G, Rajendiran N, Srikumar PS (2021) Role of zinc (Zn) in human reproduction: A journey from initial spermatogenesis to childbirth. Int J Mol Sci 22(4):2188. https://doi.org/10.3390/ijms22042188.

Unal O, Baltaci AK, Mogulkoc R, Avunduk MC (2021) Effect of pinealectomy and melatonin supplementation on metallothionein, ZnT2, ZIP2, ZIP4 and zinc levels in rat small intestine. Biotech Histochem 96(8):623-635. https://doi.org/10.1080/10520295.2021.1885738

Baltaci AK, Mogulkoc R (2007) Pinealectomy and melatonin administration in rats: their effects on plasma leptin levels and relationship with zinc. Acta Biol Hung 58(4):335-343. https://doi.org/10.1556/ABiol.58.2007.4.1

Baltaci AK, Mogulkoc R, Bediz CS, Pekel A (2005) Effects of zinc deficiency and pinealectomy on cellular immunity in rats infected with Toxoplasma gondii. Biol Trace Elem Res 104(1):47-56. https://doi.org/10.1385/BTER:104:1:047

Fujie T, Segawa Y, Yoshida E, Kimura T, Fujiwara Y, Yamamoto C, Satoh M, Naka H, Kaji T (2016) Induction of metallothionein isoforms by copper diethyldithiocarbamate in cultured vascular endothelial cells. J Toxicol Sci 41(2):225-232. https://doi.org/10.2131/jts.41.225.

Kimura T, Kambe T (2016) The Functions of Metallothionein and ZIP and ZnT Transporters: An Overview and Perspective. Int J Mol Sci 17(3):336. https://doi.org/10.3390/ijms17030336.

Lee PP, Pang SF (1992) Identification and characterization of melatonin binding sites in the gastrointestinal tract of ducks. Life Sci 50(2):117-25. https://doi.org/10.1016/0024-3205(92)90293-x.

Lee PP, Pang SF (1993) Melatonin and its receptors in the gastrointestinal tract. Biol Signals 2(4):181-93. https://doi.org/10.1159/000109491.

Downloads

Published

2024-05-26

How to Cite

Ustun, A., Koykun, Z., Yilmaz, B., Mogulkoc, R., & Baltaci, A. K. (2024). Effects of Pinealectomy and Melatonin Supplementation on Elements Metabolism in Rat Testicular Tissue. European Journal of Therapeutics, 30(5), 638–644. https://doi.org/10.58600/eurjther2125

Issue

Section

Original Articles

Categories