Changes in Plasma Amino Acid Levels in Crimean-Congo Hemorrhagic Fever Patients


Abstract views: 213 / PDF downloads: 573

Authors

DOI:

https://doi.org/10.58600/eurjther2112

Keywords:

biochemical analysis, Crimean‐Congo hemorrhagic fever virus, metabolic analysis, research andanalysis methods

Abstract

Objective: Crimean Congo Hemorrhagic Fever (CCHF) has an important place in viral hemorrhagic fever. Plasma amino acid (AA) levels of patients who were diagnosed with CCHF in the acute and convalescent period of the disease were investigated in this study.

Methods: 35 patients were included in the study specific polymerase chain reaction (PCR) and/or IgM antibody positivity for CCHF virus. AA levels were measured in the plasma derived from the blood samples of the patient and control groups, using liquid chromatography-mass spectrometry (LC-MS/MS) technique.

Results: In our study, we observed that plasma aspartate, glutamate, histidine, leucine, phenylalanine, tyrosine levels increased statistically significantly (p<0.05), while some AA levels decreased (p<0.05) in acute stage patients compared to the control groups. In addition, while there was an increase in plasma glutamate levels of convalescent patients compared to the control groups (p<0.05), there was a significant decrease in other AA levels (p<0.05).

            Conclusion: Further studies to investigate the relationship between increased or decreased AAs in the plasma levels of these patients and the immune system are likely to contribute to a better understanding of the pathogenesis of the disease and to guide the approach to whether AA supplementation is necessary for treatment.

                Keywords: biochemical analysis, Crimean‐Congo hemorrhagic fever virus, metabolic analysis, research andanalysis methods

Metrics

Metrics Loading ...

References

Adams MJ, Lefkowitz EJ, King AMQ, Harrach B, Harrison RL, Knowles NJ, Kropinski AM, Krupovic M, Kuhn JH, Mushegian AR, Nibert M, Sabanadzovic S, Sanfaçon H, Siddell SG, Simmonds P, Varsani A, Zerbini FM, Gorbalenya AE, Davison AJ (2017) Changes to taxonomy and the International Code of Virus Classification and Nomenclature ratified by the International Committee on Taxonomy of Viruses. Arch Virol.162(8):2505–2538. https://doi.org/10.1007/s00705-017-3358-5

Ergönül Ö (2006) Crimean-Congo haemorrhagic fever. Lancet Infect Dis. 6(4):203-214.

Vatansever Z (2007) Kırım Kongo Kanamalı Ateşi Epidemiyolojisinde Çevresel, Vektörel, İklimsel Değişikliklerin Rolü. 3.Ulusal Viroloji Kongre Kitabı, Bursa, s. 203-206.

Li P, Yin YL, Li D, Kim SW, Wu G (2007) Amino acids and immune function. Br J Nutr. 98(2):237-252. https://doi.org/10.1017/S000711450769936X

Dasgupta M, Sharkey JR, Wu G (2005) Inadequate intakes of indispensable amino acids among homebound older adults. J Nutr Elder. 24(3):85-99. https://doi.org/10.1300/J052v24n03_07

Wannemacher RW (1977) Key role of various individual amino acids in host response to infection, Am J Clin Nutr. 30(8):1269-1280. https://doi.org/10.1093/ajcn/30.8.1269

Kurpad AV (2006) The requirements of protein & amino acid during acute & chronic infections. Indian J Med Res. 124(2), 129-148.

Aydın H, Engin A, Keleş S, Ertemür Z, Hekim SN (2020) Glutamine depletion in patients with Crimean-Congo hemorrhagic fever. J Med Virol. 92(12):2983-2991. https://doi.org/10.1002/jmv.25872

Ulusal Gıda Kompozisyon Veri Tabanı (2017). Available from https://turkomp.tarimorman.gov.tr/database?type=foods (Accessed 12 Sep 2019)

Türkiye Beslenme Rehberi (2019). Available from https://dosyasb.saglik.gov.tr/Eklenti/10915,tuber-turkiye-beslenme-rehberipdf.pdf (Accessed 12 Sep 2019)

Holeček M (2018) Branched-chain amino acids in health and disease: metabolism, alterations in blood plasma, and as supplements. Nutr Metab (Lond). 15:33. https://doi.org/10.1186/s12986-018-0271-1

Freund HR, Ryan JA Jr, Fischer JE (1978). Amino acid derangements in patients with sepsis: treatment with branched chain amino acid rich infusions. Ann Surg. 188(3):423-430. https://doi.org/10.1097/00000658-197809000-00017

Holecek M, Siman P, Vodenicarovova M, Kandar R (2016) Alterations in protein and amino acid metabolism in rats fed a branched-chain amino acid- or leucine-enriched diet during postprandial and postabsorptive states. Nutr Metab (Lond). 13:12. https://doi.org/10.1186/s12986-016-0072-3

Gluud LL, Dam G, Borre M, Les I, Cordoba J, Marchesini G, Aagaard NK, Risum N, Vilstrup H (2013) Oral branched-chain amino acids have a beneficial effect on manifestations of hepatic encephalopathy in a systematic review with meta-analyses of randomized controlled trials. J Nutr. 143(8):1263-1268. https://doi.org/10.3945/jn.113.174375

Newsholme P, Procopio J, Lima MM, Pithon-Curi TC, Curi R (2003) Glutamine and glutamate--their central role in cell metabolism and function. Cell Biochem Funct. 21(1):1-9. https://doi:10.1002/cbf.1003

Wu G, Meininger CJ (2002) Regulation of nitric oxide synthesis by dietary factors. Annu Rev Nutr. 22:61-86. https://doi:10.1146/annurev.nutr.22.110901.145329

Tian J, Lu Y, Zhang H, Chau CH, Dang HN, Kaufman DL (2004) Gamma-aminobutyric acid inhibits T cell autoimmunity and the development of inflammatory responses in a mouse type 1 diabetes model. J Immunol. 173(8):5298-5304. https://doi:10.4049/jimmunol.173.8.5298

Stuckey DJ, Anthony DC, Lowe JP, Miller J, Palm WM, Styles P, Perry VH, Blamire AM, Sibson NR (2005) Detection of the inhibitory neurotransmitter GABA in macrophages by magnetic resonance spectroscopy. J Leukoc Biol. 78(2):393-400. https://doi:10.1189/jlb.1203604

Wu G, Bazer FW, Cudd TA, Meininger CJ, Spencer TE (2004) Maternal nutrition and fetal development. J Nutr. 134(9):2169-2172. https://doi:10.1093/jn/134.9.2169

Yang J, He J, Cao H, Zhao X, Fu S, Lu H, Chen Y, Pan X, Li L (2012) Correlation between plasma amino acid profiles and the various stages of hepatitis B infection. Eur J Clin Microbiol Infect Dis. 31(8):2045-2052. https://doi:10.1007/s10096-011-1538-x

Ziegler TR, Judd SE, Ruff JH, McComsey GA, Eckard AR (2017) Amino Acid Concentrations in HIV-Infected Youth Compared to Healthy Controls and Associations with CD4 Counts and Inflammation. AIDS Res Hum Retroviruses. 33(7):681-689. https://doi:10.1089/AID.2015.0369

Klassen P, Fürst P, Schulz C, Mazariegos M, Solomons NW (2001) Plasma free amino acid concentrations in healthy Guatemalan adults and in patients with classic dengue. Am J Clin Nutr. 73(3):647-652. https://doi:10.1093/ajcn/73.3.647

Kudsk KA (2006) Immunonutrition in surgery and critical care. Annu Rev Nutr. 26:463-479. https://doi:10.1146/annurev.nutr.26.061505.111230

Aydin H, Guven FM, Yilmaz A, Engin A, Sarı I, Bakır D (2013) Oxidative stress in the adult and pediatric patients with Crimean-Congo haemorrhagic fever. J Vector Borne Dis. 50(4):297‐301.

Newsholme P, Curi R, Pithon Curi TC, Murphy CJ, Garcia C, Pires de Melo M (1999) Glutamine metabolism by lymphocytes, macrophages, and neutrophils: its importance in health and disease. J Nutr Biochem. 10(6):316-324. https://doi:10.1016/s0955-2863(99)00022-4

Wu G, Fang YZ, Yang S, Lupton JR, Turner ND (2004) Glutathione metabolism and its implications for health. J Nutr. 134(3):489-492. https://doi:10.1093/jn/134.3.489

Wu G, Field CJ, Marliss EB (1992) Enhanced glutamine and glucose metabolism in cultured rat splenocytes stimulated by phorbol myristate acetate plus ionomycin. Metabolism. 41(9):982-988. https://doi:10.1016/0026-0495(92)90124-S

Zhang J, Fan J, Venneti S, Cross JR, Takagi T, Bhinder B, Djaballah H, Kanai M, Cheng EH, Judkins AR, Pawel B, Baggs J, Cherry S, Rabinowitz JD, Thompson CB (2014) Asparagine plays a critical role in regulating cellular adaptation to glutamine depletion. Mol Cell. 56(2):205-218. https://doi:10.1016/j.molcel.2014.08.018

Soyöz M, Ayna TK, Pirim İ (2020) İmmünolojik Açıdan COVID-19 Enfeksiyonuna Bakış. İzmir Tepecik Eğitim Hastanesi Dergisi. 30(0):101-111 https://doi:10.5222/terh.2020.11298

Altınışık M (2017) Protein ve Aminoasit Metabolizması. Available from https://www.mustafaaltinisik.org.uk/89-1-19.pdf (Accessed 19 Oct 2019)

Platten M, Ho PP, Youssef S, Fontoura P, Garren H, Hur EM, Gupta R, Lee L. Y, Kidd BA, Robinson WH, Sobel RA, Selley ML, Steinman L (2005) Treatment of autoimmune neuroinflammation with a synthetic tryptophan metabolite. Science (New York, N.Y.) 310(5749):850-855. https://doi.org/10.1126/science.1117634

Hortin GL, Landt M, Powderly WG (1994) Changes in plasma amino acid concentrations in response to HIV-1 infection. Clin Chem. 40(5):785-789.

Powanda MC, Dinterman RE, Wannemacher RW Jr, Herbrandson GD (1974) Distribution and metabolism of phenylalanine and tyrosine during tualraemia in the rat. Biochem J. 144(1):173-176. https://doi:10.1042/bj1440173

Kim SW, Mateo RD, Yin YL, Wu G (2007) Functional amino acids and fatty acids for enhancing production performance of sows and piglets. Asian-Aust J Anim Sci 20, 295–306.

Ando T, Imamura H, Suzuki R, Aizaki H, Watanabe T, Wakita T, Suzuki T (2012) Visualization and measurement of ATP levels in living cells replicating hepatitis C virus genome RNA. PLoS Pathog. 8(3):e1002561. https://doi:10.1371/journal.ppat.1002561

Fang YZ, Yang S, Wu G (2002) Free radicals, antioxidants, and nutrition. Nutrition. 2002;18(10):872-879. https://doi:10.1016/s0899-9007(02)00916-4

Abumrad NN, Barbul A (2003) Metabolic and Therapeutic Aspects of Amino Acids in Clinical Nutrition 2nd Edition. In: The use of arginine in clinical practice. pp. 595-611

Wang L, Liu S, Yang W, Yu H, Zhang L, Ma P, Wu P, Li X, Cho K, Xue S, Jiang B (2017) Plasma Amino Acid Profile in Patients with Aortic Dissection. Sci Rep. 7:40146. Published 2017 Jan 10. https://doi:10.1038/srep40146

Wu G, Flynn NE, Flynn SP, Jolly CA, Davis PK (1999) Dietary protein or arginine deficiency impairs constitutive and inducible nitric oxide synthesis by young rats. J Nutr. 129(7):1347-1354. https://doi:10.1093/jn/129.7.1347

Jones AL, Hulett MD, Parish CR (2005) Histidine-rich glycoprotein: A novel adaptor protein in plasma that modulates the immune, vascular and coagulation systems. Immunol Cell Biol. 2005;83(2):106-118. https://doi:10.1111/j.1440-1711.2005.01320.x

Downloads

Published

2024-05-17

How to Cite

Ertemür, Z., Aydın, H., & Engin, A. (2024). Changes in Plasma Amino Acid Levels in Crimean-Congo Hemorrhagic Fever Patients. European Journal of Therapeutics, 30(5), 682–692. https://doi.org/10.58600/eurjther2112

Issue

Section

Original Articles