Evaluation of Sacrum Measurements in Healthy Individuals and Patients with L5-S1 Spondylolisthesis
Abstract views: 274 / PDF downloads: 239
DOI:
https://doi.org/10.58600/eurjther1934Keywords:
Morphology, multidetector computed tomography, L5-S1 spondylolisthesis, sacrum, spinopelvicAbstract
Objective: In recent studies, the relationship between sacrum morphology and orientation and spondylolisthesis has gained importance. The present study aimed to compare the morphometry of the sacrum between patients with L5-S1 spondylolisthesis and healthy subjects on multidetector computed tomography (MDCT) images.
Methods: In this study, abdominopelvic MDCT images of 191 individuals (age range 20-92 years; 101 males and 90 females; 56 patients diagnosed with L5-S1 spondylolisthesis and 135 healthy individuals) were retrospectively evaluated. In this study, the sacrum parameters (Intercornual distance (ICD), sacral hiatus length (LHS), anteroposterior diameter of hiatus at the apex of sacral hiatus(APCWHSA), sacral height (SH), sacral table angle (STA), sacral table index (STI), S1 superior angle (S1A), sacral slope(SS)) evaluated morphometric and morphological in healthy individuals and patients with L5-S1 spondylolisthesis. Kolmogorov–Smirnov test was used to test the normality, which is one of the parametric test assumptions, of the data.
Results: Age parameter was found statistically significant higher in the patient group (p<0.001). STA, S1A, SH, LHS and APCWHSA measurements were found to be significantly higher in the healthy group. (p<0.001, p<0.001, p=.008, p=.005, and p=.002, respectively). STI and ICD were found to be significantly higher in women in the healthy group (p=.031, p=.010), while SH parameter was found statistically significant higher in men in the healthy group (p=.007). SS was found statistically significant lower in the healthy group (p<0.001). S1A, L5-S1 spondylolisthesis was found statistically significant higher than Grade 1, Grade 2 according to the degree of slippage (p=.045).
Conclusion: The results of this study showed that sacral morphology is important in the development or at least progression of spondylolisthesis.
Metrics
References
Burton MR, Mesfin FB (2017) Isthmic spondylolisthesis. Available from https://pubmed.ncbi.nlm.nih.gov/28722876/ Accessed 17 Jan 2022
Leng Y, Tang C, Liao Y, Tang Q, Ma F, Pu X, He B, Wang Q, Zhong D (2022) Correlation between sacral slope and pedicle morphology of the fourth lumbar vertebra in degenerative lumbar spondylolisthesis. Global Spine J 0(0):1-10. https://doi.org/10.1177/21925682221117151
Funao H, Tsuji T, Hosogane N, Watanabe K, Ishii K, Nakamura M, Chiba K, Toyama Y (2012) Comparative study of spinopelvic sagittal alignment between patients with and without degenerative spondylolisthesis. Eur Spine J. 21(11):2181-2187. https://doi.org/10.1007/s00586-012-2374-0
Shao X, Liu H, Wu J, Qian Z, Qu R, Liu T (2022) A retrospective comparative study of postoperative sagittal balance in isthmic L5-S1 spondylolisthesis using single segment or two-segment pedicle screw fixation. BMC Musculoskelet Disord. 23(1):145. https://doi.org/10.1186/s12891-022-05098-y
Roussouly P, Gollogly S, Berthonnaud E, Dimnet J (2005) Classification of the normal variation in the sagittal alignment of the human lumbar spine and pelvis in the standing position. Spine (Phila Pa 1976) 30(3):346-353. https://doi.org/ 10.1097/01.brs.0000152379.54463.65
Labelle H, Mac-Thiong JM, Roussouly P (2011) Spino-pelvic sagittal balance of spondylolisthesis:a review and classification. Eur Spine J 20(5):641-646. https://doi.org/10.1007/s00586-011-1932-1
Niggemann P, Kuchta J, Grosskurth D, Beyer HK, Hoeffer J, Delank KS (2012) Spondylolysis and isthmic spondylolisthesis: impact of vertebral hypoplasia on the use of the Meyerding classification. Br J Radiol. 85(1012):358-362. https://doi.org/10.1259/bjr/60355971
Wang Z, Parent S, Mac-Thiong J-M, Petit Y, Labelle H (2008) Influence of sacral morphology in developmental spondylolisthesis. Spine (Phila Pa 1976) 33(20):2185-2191.https://doi.org/ 10.1097/BRS.0b013e3181857f70
Marty C, Boisaubert B, Descamps H, Montigny J, Hecquet J, Legaye J, Duval-Beaupere G (2002) The sagittal anatomy of the sacrum among young adults, infants, and spondylolisthesis patients. Eur Spine J. 11(2):119-125. https://doi.org/10.1007/s00586-001-0349-7
Basaloglu H, Turgut M, Taser F, Ceylan T, Basaloglu H, Ceylan A (2005) Morphometry of the sacrum for clinical use. Surg Radiol Anat. 27(6):467-471. https://doi.org/10.1007/s00276-005-0036-1
Seema, Singh M, Mahajan A (2013) An anatomical study of variations of sacral hiatus in sacra of North Indian origin and its clinical significance. Int J Morphol. 31(1):110-114. https://doi.org/10.4067/S0717-95022013000100017
Singh A, Gupta R, Singh A (2018) Morphological and morphometrical study of sacral hiatus of human sacrum. Nat J Integr Res Med. 9(4):65-73.
Bagheri H, Govsa F (2017) Anatomy of the sacral hiatus and its clinical relevance in caudal epidural block. Surg Radiol Anat. 39(9):943–951. https://doi.org/10.1007/s00276-017-1823-1
Karakas H, Celbis O, Harma A, Alicioglu B (2011) Total body height estimation using sacrum height in anatolian caucasians: multidetector computed tomography-based virtual anthropometry. Skeletal Radiol. 40(5):623-630. https://doi.org/10.1007/s00256-010-0937-x
Mazurek M, Kulesza B, Gołębiowska N, Tyzo B, Kura K, Szczepanek D (2023) Factors predisposing to the formation of degenerative spondylolisthesis-a narrative review. Medicina (Kaunas) 59(8):1430. https://doi.org/10.3390/medicina59081430
Kalichman L, Hunter DJ (2008) Diagnosis and conservative management of degenerative lumbar spondylolisthesis. Eur Spine J. 17(3):327–335. https://doi.org/10.1007/s00586-007-0543-3
Kong Q, Wei B, Niu S, Liao J, Zu Y, Shan T (2023) Age, pelvic incidence, facet joint angle and pedicle-facet angle as correlative factors for isthmic spondylolisthesis: a retrospective case control study. BMC Musculoskelet Disord. 24(1):497. https://doi.org/10.1186/s12891-023-06569-6
Wang Z, Parent S, de Guise JA, Labelle H (2010) A variability study of computerized sagittal sacral radiologic measures. Spine (Phila Pa 1976) 35(1):71-75. https://doi.org/10.1097/BRS.0b013e3181bc9436
Ergun T, Sahin MS, Lakadamyali H (2010) Two and three dimensional reformatted computed tomography imaging analysis of the lumbosacropelvic structure in degenerative anterolisthesis. Clin Radiol. 65(11):908-915. https://doi.org/10.1016/j.crad.2010.06.012
Sugawara K, Lesato N, Katayose M (2020) Comparison of the sacral table angles by progression stage of lumbar spondylolysis. Spine Deform. 8(1):123-127. https://doi.org/10.1007/s43390-020-00043-2
Baker JF (2022) Sacropelvic parameters and L5 spondylolysis: computed tomography analysis. Asian Spine J. 16(1):66-74. https://doi.org/10.31616%2Fasj.2020.0442
Ru N, Li J, Li Y, Sun J, Wang G, Cui X (2021) Sacral anatomical parameters varies in different sagittal shapes as well as their relations to lumbopelvic parameters. JOR Spine 4(4):e1180. https://doi.org/10.1002/jsp2.1180
Inoue H, Ohmori K, Miyasaka K (2002) Radiographic classification of L5 isthmic spondylolisthesis as adolescent or adult vertebral slip. Spine (Phila Pa 1976) 27(8):831-838. https://doi.org/10.1097/00007632-200204150-00010
Cosgun Z, Dagistan E, Dagistan Y (2019) Effects of sagittal balance differences on spondylolisthesis. Acta Ortop Bras. 27(2):120-123. https://doi.org/10. 1590/1413-785220192702205665
Hanke LF, Tuakli-Wosornu YA, Harrison JR, Moley PJ (2018) The relationship between sacral slope and symptomatic isthmic spondylolysis in a cohort of high school athletes: a retrospective analysis. PM&R 10(5):501-506. https://doi.org/10.1016/j.pmrj.2017.09.012
Sudhir G, Acharya S, Kalra KL, Chahal R (2016) Radiographic analysis of the sacropelvic parameters of the spine and their correlation in normal asymptomatic subjects. Glob Spine J. 6(2):169-175. https://doi.org/10.1055/s-0035-1558652
Triwidodo A, Rahyussalim A J, Yulisa ND, Pandelaki J, Huraiby LS, Hadi IAN, Liosha FY (2021) Sacrum morphometry and spinopelvic parameters among the Indonesian population using computed tomography scans. Medicine (Baltimore) 100(47):e27955. https://doi.org/10.1097%2FMD.0000000000027955
Labelle H, Roussouly P, Berthonnaud É, Transfeldt E, O’brien M, Chopin D, Hresko T, Dimnet J (2004) Spondylolisthesis, pelvic incidence, and spinopelvic balance: a correlation study. Spine (Phila Pa 1976) 29(18):2049-2054. https://doi.org/10.1097/01.brs.0000138279.53439.cc
Harroud A, Labelle H, Joncas J, Mac-Thiong J-M (2013) Global sagittal alignment and health-related quality of life in lumbosacral spondylolisthesis. Eur Spine J. 22(4):849–856. https://doi.org/10.1007/s00586-012-2591-6
Min W-K, Lee C-H (2014) Comparison and correlation of pelvic parameters between low-grade and high-grade spondylolisthesis. J Spinal Disord Tech. 27(3):162-165. https://doi.org/10.1097/BSD.0b013e31829c07a4
Lai Q, Gao T, Lv X, Liu X, Wan Z, Dai M, Zhang B, Nie T (2018) Correlation between the sagittal spinopelvic alignment and degenerative lumbar spondylolisthesis: a retrospective study. BMC Musculoskelet Disord. 19(1):151. https://doi.org/10.1186/s12891-018-2073-z
Nakamae T, Nakanishi K, Kamei N, Adachi N (2019) The correlation between sagittal spinopelvic alignment and degree of lumbar degenerative spondylolisthesis. J Orthop Sci 24(6):969-973. https://doi.org/10.1016/j.jos.2019.08.021
Suzuki H, Imai N, Nozaki A, Hirano Y, Endo N (2019) Anatomical sacral slope, a new pelvic parameter, is associated with lumbar lordosis and pelvic incidence in healthy Japanese women: a retrospective cross-sectional study. J Orthop Surg. 28(1):1-5. https://doi.org/10.1177/2309499019888809
Mishra S, Singh P, Agrawal A, Gupta R (2003) Identification of sex of sacrum of agra region. J Anat Soc India 52(2):132-136.
Bakici R S, Oner Z, Oner S (2021) The Analysis of sacrum and coccyx length measured with computerized tomography ımages depending on sex. Egypt J Forensic Sci. 11(1):1-13. https://doi.org/10.1186/s41935-021-00227-5
Sekiguchi M, Yabuki S, Satoh K, Kikuchi S (2004) An anatomic study of the sacral hiatus: a basis for successful caudal epidural block. Clin J Pain. 20(1):51-54. https://doi.org/10.1097/00002508-200401000-00010
Mrudula C, Naveena S (2013) Morphometry of sacral hiatus and its clinical relevance. Int J Adv Res. 1(7):12-18.
Saikia R, Sarma M (2016) Variations of sacral hiatus in dry human sacra: an anatomical study. J Evid Based Med Health 3(60):3238-3242.
Kamal AM, Ara S, Ashrafuzzaman M, Khatun K, Islam MS (2014) Morphometry of sacral hiatus and its clinical relevance in caudal epidural block. J Dhaka Medical College 23(1):31-36. https://doi.org/10.3329/jdmc.v23i1.22690
Kilicaslan A, Keskin F, Babaoglu O, Gok F, Erdi MF, Kaya B, Ozbıner H, Ozbek O, Koc O, Karıca BK (2015) Morphometric analysis of the sacral canal and hiatus using multidetector computed tomography for interventional procedures. Turk Neurosurg. 25(4):566-573. https://doi.org/10.5137/1019-5149.JTN.10942-14.0
Park GY, Kwon DR, Cho HK (2015) Anatomic differences in the sacral hiatus during caudal epidural injection using ultrasound guidance. J Ultrasound Med. 34(12):2143-2148. https://doi.org/10.7863/ultra.14.12032
Kao SC, Lin CS (2017) Caudal epidural block: an updated review of anatomy and techniques. Biomed Res Int. 2017:9217145. https://doi.org/10.1155/2017/9217145
Downloads
Published
How to Cite
Issue
Section
Categories
License
Copyright (c) 2024 European Journal of Therapeutics
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
The content of this journal is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.