Blocking the Apelin Receptor (APJ) Attenuates TNBS-Induced Colitis in Rats
Abstract views: 400 / PDF downloads: 150
DOI:
https://doi.org/10.58600/eurjther1883Keywords:
APJ, F13A, TNBS, ulcerative colitis, ratAbstract
Objective: The apelinergic system, consisting of apelin, ELABELA, and the apelin receptor (APJ), has a wide range of roles in physiological and pathophysiological processes in tissues. The effects of increased apelin and APJ as an indicator of damage in inflammatory conditions or as a compensatory mechanism are not fully clear in inflammatory bowel disease (IBD). This study was designed to assess the role of APJ in 2,4,6-trinitrobenzene sulfonic acid (TNBS)-induced colitis model.
Methods: Colitis in adult male Wistar rats were induced by intrarectally administered TNBS (30 mg b.w. in 50% ethanol). While the control group was treated with only saline to the colon, the TNBS+F13A and F13A groups received the APJ antagonist F13A (30 µg/kg/day, i.v.) for 3 days, starting immediately after TNBS or saline administration, respectively.
Results: A decrease in body weight and an increase in colon weight/length ratio and stool consistency score were observed in the TNBS group. TNBS caused an increase in the myeloperoxidase (MPO) activity and the number of proinflammatory cytokines (TNF-α, IL-1β, and IL-6), as well as apelin production, leading to mucosal ulceration, necrosis, and submucosal edema in the colon. While F13A administration to the control did not cause any change in the colon, F13A administration immediately after TNBS greatly reduced the effects of TNBS.
Conclusion: APJ is involved in the development of damage in colitis induced by TNBS. F13A reduces the level of damage, inflammatory cell infiltration, and MPO enzyme activity. APJ may be a therapeutic target in IBD.
Metrics
References
Guan Q (2019) A Comprehensive Review and Update on the Pathogenesis of Inflammatory Bowel Disease. J Immunol Res. 2019:7247238. https://doi.org/10.1155/2019/7247238
Caruso R, Lo BC, Núñez G (2020) Host-microbiota interactions in inflammatory bowel disease. Nat Rev Immunol. 20:411-426. https://doi.org/10.1038/s41577-019-0268-7
Xavier RJ, Podolsky DK (2007) Unravelling the pathogenesis of inflammatory bowel disease. Nature. 448:427-434. https://doi.org/10.1038/nature06005
Windsor JW, Kaplan GG (2019) Evolving Epidemiology of IBD. Curr Gastroenterol Rep. 21:40. https://doi.org/10.1007/s11894-019-0705-6
Zhang, Li Y-Y (2014) Inflammatory bowel disease: pathogenesis. World J Gastroenterol. 20:91-99. https://doi.org/10.3748/wjg.v20.i1.91
Sales-Campos H, Basso PJ, Alves VBF, Fonseca MTC, Bonfá G, Nardini V, Cardoso CRB (2015) Classical and recent advances in the treatment of inflammatory bowel diseases. Braz J Med Biol Res. 48:96-107. https://doi.org/10.1590/1414-431X20143774
O'Dowd BF, Heiber M, Chan A, Heng HH, Tsui LC, Kennedy JL, Shi X, Petronis A, George SR, Nguyen T (1993) A human gene that shows identity with the gene encoding the angiotensin receptor is located on chromosome 11. Gene. 136:355-360. https://doi.org/10.1016/0378-1119(93)90495-o
Shin K, Kenward C, Rainey JK (2017) Apelinergic system structure and function. Compr Physiol. 8:407-450. https://doi.org/10.1002/cphy.c170028
Tatemoto K, Hosoya M, Habata Y, Fujii R, Kakegawa T, Zou MX, Kawamata Y, Fukusumi S, Hinuma S, Kitada C, Kurokawa T, Onda H, Fujino M (1998) Isolation and characterization of a novel endogenous peptide ligand for the human APJ receptor. Biochem Biophys Res Commun. 251:471-476. https://doi.org/10.1006/bbrc.1998.9489
Wang X, Zhang L, Li P, Zheng Y, Yang Y, Ji S (2022) Apelin/APJ system in inflammation. Int Immunopharmacol. 109:108822. https://doi.org/10.1016/j.intimp.2022.108822
Lv S, Feng Y, Jiang Q, Lv X, Yang Y (2021) Relationship between Apelin/APJ Signaling, Oxidative Stress, and Diseases. Oxid Med Cell Longev. 2021:e8866725. https://doi.org/10.1155/2021/8866725
Han S, Wang G, Qiu S, de la Motte C, Wang H-Q, Gomez G, Englander EW, Greeley GH (2007) Increased colonic apelin production in rodents with experimental colitis and in humans with IBD. Regul Pept. 142:131-137. https://doi.org/10.1016/j.regpep.2007.02.002
Huang Z, Luo X, Liu M, Chen L (2019) Function and regulation of apelin/APJ system in digestive physiology and pathology. J Cell Physiol. 234:7796-7810. https://doi.org/10.1002/jcp.27720
Brown SJ, Mayer L (2007) The immune response in inflammatory bowel disease. Am J Gastroenterol. 102:2058-2069. https://doi.org/10.1111/j.1572-0241.2007.01343.x
Mudter J, Neurath MF (2007) Il-6 signaling in inflammatory bowel disease: Pathophysiological role and clinical relevance. Inflamm Bowel Dis. 13:1016-1023. https://doi.org/10.1002/ibd.20148
Han S, Wang G, Qi X, Englander EW, Greeley GH (2008) Involvement of a Stat3 binding site in inflammation-induced enteric apelin expression. Am J Physiol Gastrointest Liver Physiol. 295:G1068-G1078. https://doi.org/10.1152/ajpgi.90493.2008
Banerjee S, Ghosh S, Sinha K, Chowdhury S, Sil PC (2019) Sulphur dioxide ameliorates colitis related pathophysiology and inflammation. Toxicology. 412:63-78. https://doi.org/10.1016/j.tox.2018.11.010
Lee DK, Saldivia VR, Nguyen T, Cheng R, George SR, O'Dowd BF (2005) Modification of the terminal residue of apelin-13 antagonizes its hypotensive action. Endocrinology. 146:231-236. https://doi.org/10.1210/en.2004-0359
Togawa J-I, Nagase H, Tanaka K, Inamori M, Nakajima A, Ueno N, Saito T, Sekihara H (2002) Oral administration of lactoferrin reduces colitis in rats via modulation of the immune system and correction of cytokine imbalance. J Gastroenterol Hepatol. 17:1291-1298. https://doi.org/10.1046/j.1440-1746.2002.02868.x
Dinc S, Caydere M, Akgul G, Yenidogan E, Hücümenoglu S, Rajesh M (2015) Methylene Blue inhibits the inflammatory process of the acetic acid-induced colitis in the rat colonic mucosa. Int Surg. https://doi.org/10.9738/INTSURG-D-15-00118.1
Santos FA, Silva RM, Campos AR, De Araújo RP, Lima Júnior RCP, Rao VSN (2004) 1,8-cineole (eucalyptol), a monoterpene oxide attenuates the colonic damage in rats on acute TNBS-colitis. Food Chem Toxicol. 42:579-584. https://doi.org/10.1016/j.fct.2003.11.001
Dutra RC, Cola M, Leite DFP, Bento AF, Claudino RF, Nascimento AFZ, Leal PC, Calixto JB (2011) Inhibitor of PI3Kγ ameliorates TNBS-induced colitis in mice by affecting the functional activity of CD4+CD25+FoxP3+ regulatory T cells. Br J Pharmacol. 163:358-374. https://doi.org/10.1111/j.1476-5381.2011.01226.x
Bradley PP, Priebat DA, Christensen RD, Rothstein G (1982) Measurement of cutaneous inflammation: estimation of neutrophil content with an enzyme marker. J Invest Dermatol. 78:206-209. https://doi.org/10.1111/1523-1747.ep12506462
Antoniou E, Margonis GA, Angelou A, Pikouli A, Argiri P, Karavokyros I, Papalois A, Pikoulis E (2016) The TNBS-induced colitis animal model: An overview. Ann Med Surg. 11:9-15. https://doi.org/10.1016/j.amsu.2016.07.019
Parker A, Vaux L, Patterson AM, Modasia A, Muraro D, Fletcher AG, Byrne HM, Maini PK, Watson AJM, Pin C (2019) Elevated apoptosis impairs epithelial cell turnover and shortens villi in TNF-driven intestinal inflammation. Cell Death Dis. 10:108. https://doi.org/10.1038/s41419-018-1275-5
Assimakopoulos SF, Triantos C, Maroulis I, Gogos C (2018) The Role of the Gut Barrier Function in Health and Disease. Gastroent Res. 11:261-263. https://doi.org/10.14740/gr1053w
Mohammad R, Shayesteh S, Ala M, Yousefi-Manesh H, Rashidian A, Hashemian SM, Sorouri M, Dehpour AR (2021) Dapsone Ameliorates Colitis through TLR4/NF-kB Pathway in TNBS Induced Colitis Model in Rat. Arch Med Res. 52:595-602. https://doi.org/10.1016/j.arcmed.2021.03.005
El Sayed NS, Sayed AS (2019) Protective effect of methylene blue on TNBS-induced colitis in rats mediated through the modulation of inflammatory and apoptotic signalling pathways. Arch Toxicol. 93:2927-2942. https://doi.org/10.1007/s00204-019-02548-w
Antushevich H, Wójcik M (2018) Review: Apelin in disease. Clinica Chimica Acta; International Journal of Clinical Chemistry. 483:241-248. https://doi.org/10.1016/j.cca.2018.05.012
Wang G, Kundu R, Han S, Qi X, Englander EW, Quertermous T, Greeley GH (2009) Ontogeny of apelin and its receptor in the rodent gastrointestinal tract. Regul Pept. 158:32-39. https://doi.org/10.1016/j.regpep.2009.07.016
Fournel A, Drougard A, Duparc T, Marlin A, Brierley SM, Castro J, Le-Gonidec S, Masri B, Colom A, Lucas A, Rousset P, Cenac N, Vergnolle N, Valet P, Cani PD, Knauf C (2017) Apelin targets gut contraction to control glucose metabolism via the brain. Gut. 66:258-269. https://doi.org/10.1136/gutjnl-2015-310230
Wang G, Anini Y, Wei W, Qi X, OCarroll A-M, Mochizuki T, Wang H-Q, Hellmich MR, Englander EW, Greeley GH (2004) Apelin, a new enteric peptide: localization in the gastrointestinal tract, ontogeny, and stimulation of gastric cell proliferation and of cholecystokinin secretion. Endocrinology. 145:1342-1348. https://doi.org/10.1210/en.2003-1116
Izgüt-Uysal VN, Gemici B, Birsen I, Acar N, Üstünel I (2017) The effect of apelin on the functions of peritoneal macrophages. Physiol Res. 66:489-496. https://doi.org/10.33549/physiolres.933349
Birsen İ, İzgüt-Uysal VN, Soylu H, Üstünel İ (2020) The effect of apelin-13 on gastric ischemia/reperfusion injury: the roles of sensory nerves and vagus nerve. Can J Physiol Pharmacol. 98:282-295. https://doi.org/10.1139/cjpp-2019-0502
Birsen İ, İzgüt-Uysal VN (2022) Protective effects of apelin on gastric mucosa. Tissue Cell. 78:101885. https://doi.org/10.1016/j.tice.2022.101885
Gemici B, Birsen I, Izgut-Uysal VN (2023) The apelin-apela receptor APJ is necessary for formation and healing of ischemia reperfusion-induced gastric ulcer in rats. Peptides. 166:171027. https://doi.org/10.1016/j.peptides.2023.171027
Ge Y, Li Y, Chen Q, Zhu W, Zuo L, Guo Z, Gong J, Cao L, Gu L, Li J (2018) Adipokine apelin ameliorates chronic colitis in Il-10-/- mice by promoting intestinal lymphatic functions. Biochem Pharmacol. 148:202-212. https://doi.org/10.1016/j.bcp.2018.01.011
Zhou H, Yang R, Wang W, Xu F, Xi Y, Brown RA, Zhang H, Shi L, Zhu D, Gong D-W (2018) Fc-apelin fusion protein attenuates lipopolysaccharide-induced liver injury in mice. Sci Rep. 8:11428. https://doi.org/10.1038/s41598-018-29491-7
Fibbi B, Marroncini G, Naldi L, Peri A (2023) The Yin and Yang Effect of the Apelinergic System in Oxidative Stress. Int J Mol Sci. 24:4745. https://doi.org/10.3390/ijms24054745
Hashimoto T, Kihara M, Imai N, Yoshida S-I, Shimoyamada H, Yasuzaki H, Ishida J, Toya Y, Kiuchi Y, Hirawa N, Tamura K, Yazawa T, Kitamura H, Fukamizu A, Umemura S (2007) Requirement of apelin-apelin receptor system for oxidative stress-linked atherosclerosis. Am J Pathol. 171:1705-1712. https://doi.org/10.2353/ajpath.2007.070471
Yasuzaki H, Yoshida S-i, Hashimoto T, Shibata W, Inamori M, Toya Y, Tamura K, Maeda S, Umemura S (2013) Involvement of the apelin receptor APJ in Fas-induced liver injury. Liver Int. 33:118-126. https://doi.org/10.1111/liv.12006
Principe A, Melgar-Lesmes P, Fernández-Varo G, del Arbol LR, Ros J, Morales-Ruiz M, Bernardi M, Arroyo V, Jiménez W (2008) The hepatic apelin system: a new therapeutic target for liver disease. Hepatology. 48:1193-1201. https://doi.org/10.1002/hep.22467
Michielan A, D'Incà R (2015) Intestinal Permeability in Inflammatory Bowel Disease: Pathogenesis, Clinical Evaluation, and Therapy of Leaky Gut. Mediators Inflamm. 2015:628157. https://doi.org/10.1155/2015/628157
Matricon J, Meleine M, Gelot A, Piche T, Dapoigny M, Muller E, Ardid D (2012) Review article: Associations between immune activation, intestinal permeability and the irritable bowel syndrome. Aliment Pharmacol Ther. 36:1009-1031. https://doi.org/10.1111/apt.12080
Halliez MCM, Motta J-P, Feener TD, Guérin G, LeGoff L, François A, Colasse E, Favennec L, Gargala G, Lapointe TK, Altier C, Buret AG (2016) Giardia duodenalis induces paracellular bacterial translocation and causes postinfectious visceral hypersensitivity. Am J Physiol Gastrointest Liver Physiol. 310:G574-585. https://doi.org/10.1152/ajpgi.00144.2015
Bülbül M, Sinen O, Bayramoğlu O, Akkoyunlu G (2020) Enteric apelin enhances the stress-induced stimulation of colonic motor functions. Stress. 23:201-212. https://doi.org/10.1080/10253890.2019.1658739
Nozu T, Miyagishi S, Ishioh M, Takakusaki K, Okumura T (2022) Peripheral apelin mediates visceral hypersensitivity and impaired gut barrier in a rat irritable bowel syndrome model. Neuropeptides. 94:102248. https://doi.org/10.1016/j.npep.2022.102248
Buckinx R, Adriaensen D, Nassauw LV, Timmermans J-P (2011) Corticotrophin-releasing factor, related peptides, and receptors in the normal and inflamed gastrointestinal tract. Front Neurosci. 5:54. https://doi.org/10.3389/fnins.2011.00054
Shi Y, Liu T, He L, Dougherty U, Chen L, Adhikari S, Alpert L, Zhou G, Liu W, Wang J, Deb DK, Hart J, Liu SQ, Kwon J, Pekow J, Rubin DT, Zhao Q, Bissonnette M, Li YC (2016) Activation of the Renin-Angiotensin System Promotes Colitis Development. Sci Rep. 6:27552. https://doi.org/10.1038/srep27552
Mizushima T, Sasaki M, Ando T, Wada T, Tanaka M, Okamoto Y, Ebi M, Hirata Y, Murakami K, Mizoshita T, Shimura T, Kubota E, Ogasawara N, Tanida S, Kataoka H, Kamiya T, Alexander JS, Joh T (2010) Blockage of angiotensin II type 1 receptor regulates TNF-alpha-induced MAdCAM-1 expression via inhibition of NF-kappaB translocation to the nucleus and ameliorates colitis. Am J Physiol Gastrointest Liver Physiol. 298:G255-266. https://doi.org/10.1152/ajpgi.00264.2009
Sun X, Iida S, Yoshikawa A, Senbonmatsu R, Imanaka K, Maruyama K, Nishimura S, Inagami T, Senbonmatsu T (2011) Non-activated APJ suppresses the angiotensin II type 1 receptor, whereas apelin-activated APJ acts conversely. Hypertens Res. 34:701-706. https://doi.org/10.1038/hr.2011.19
Downloads
Published
How to Cite
License
Copyright (c) 2023 European Journal of Therapeutics
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
The content of this journal is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Funding data
-
Akdeniz Üniversitesi
Grant numbers TYL-2021-5554