Current Bio-based Cements and Radioactive Opacifiers in Endodontic Approaches: A Review of the Materials Used in Clinical Practice


Abstract views: 506 / PDF downloads: 244

Authors

DOI:

https://doi.org/10.58600/eurjther1849

Keywords:

Bioceramics, Biomimetic materials, Endodontics, Radiopacifiers

Abstract

Objective: This study aims to evaluate the importance of endodontic root canal sealers in filling cavities and irregularities in root canals with the primary goal of minimizing or eliminating bacterial residues. Despite this crucial objective, it's noteworthy that several conventional sealers have been linked to adverse effects, such as impaired wound healing, inflammation, and bone resorption. Therefore, there is a constant search for an optimal sealer that can effectively mimic the properties of lost tissue while maintaining an acceptable level of biological, physicochemical and biocompatible properties. The present study analyzes bioceramic cement's properties in endodontics through a comprehensive review of the available literature. Also, to evaluate the beneficial properties and characteristics of the biomaterials highlighted in this work.

Methods: The present study used a systematic review approach to conduct a comprehensive literature search to find relevant publications on bioceramic cement properties in the endodontics field. Articles were retrieved using MeSH keywords and digital searches of journal websites. The selected studies were examined to extract data on sealability, bioactivity, pH, cytotoxicity, color change, radiopacity, edge adaptation, adhesive strength, antibacterial properties and biocompatibility.

Results: The results of the reviewed research show that bioceramic endodontic cement has favorable properties for the therapeutic treatment of root canals. The literature highlights the material's biocompatibility, low cytotoxicity, bioactivity, radiopacity, appropriate pH value, favorable edge adaptation, high adhesive strength, practical sealability, antibacterial properties and minimal color change.

Conclusion: Research results to date indicate that biomaterials used in endodontics have beneficial properties for root canal therapy and mimicking natural tissue regeneration. The beneficial properties of these materials, such as their biocompatibility, bioactivity, radiopacity, pH stability, edge conformability, adhesion strength, sealability and antibacterial properties, make it a promising replacement for traditional sealers. Further studies are needed to investigate the extended clinical effectiveness of the above intervention and to refine its composition to improve the outcomes associated with endodontic therapies.

Metrics

Metrics Loading ...

Author Biography

A.Najah Saud, Department of Biomedical Engineering, Faculty of Engineering, Karabük University, Turkey

Biomedical Engineering, Al-Mustaqbal University College, Babylon, Iraq

References

Gasner NS, Brizuela M (2023) Endodontic Materials Used to Fill Root Canals. https://www.ncbi.nlm.nih.gov/books/NBK587367. Accessed Date Accessed 2023 Accessed

Assiry AA, Karobari MI, Lin GSS, Batul R, Snigdha NT, Luke AM, Shetty KP, Scardina GA, Noorani TY (2023) Microstructural and Elemental Characterization of Root Canal Sealers Using FTIR, SEM, and EDS Analysis. Applied Sciences 13(7):4517. https://doi.org/10.3390/app13074517

Al-Haddad A, Che Ab Aziz ZA (2016) Bioceramic-Based Root Canal Sealers: A Review. International Journal of Biomaterials 2016:9753210. https://doi.org/10.1155/2016/9753210

Chellapandian K, Reddy TVK, Venkatesh V, Annapurani A (2022) Bioceramic root canal sealers: A review. Int J International Journal of Health Sciences 6(S3):5693–5706. https://doi.org/10.53730/ijhs.v6nS3.7214

Mahmoud O, Al-Afifi NA, Salihu Farook M, Ibrahim MA, Al Shehadat S, Alsaegh MA (2022) Morphological and Chemical Analysis of Different Types of Calcium Silicate-Based Cements. International Journal of Dentistry 2022:6480047. https://doi.org/10.1155/2022/6480047

Chen C, Hsieh S-C, Teng N-C, Kao C-K, Lee S-Y, Lin C-K, Yang J-C (2014) Radiopacity and cytotoxicity of Portland cement containing zirconia doped bismuth oxide radiopacifiers. Journal of endodontics 40(2):251-254. https://doi.org/10.1016/j.joen.2013.07.006

Tirapelli C, Panzeri FdC, Panzeri H, Pardini LC, Zaniquelli O (2004) Radiopacity and microhardness changes and effect of X-ray operating voltage in resin-based materials before and after the expiration date. Materials Research 7(3):409-412. https://doi.org/10.1590/S1516-14392004000300006

Pekkan G (2016) Radiopacity of dental materials: An overview. Avicenna Journal of Dental Research 8(2):8-8

Antonijević D, Despotović A, Biočanin V, Milošević M, Trišić D, Lazović V, Zogović N, Milašin J, Ilić D (2021) Influence of the addition of different radiopacifiers and bioactive nano-hydroxyapatite on physicochemical and biological properties of calcium silicate based endodontic ceramic. Ceramics International 47(20):28913-28923. https://doi.org/10.1016/j.ceramint.2021.07.052

Gandolfi MG, Ciapetti G, Taddei P, Perut F, Tinti A, Cardoso MV, Van Meerbeek B, Prati C (2010) Apatite formation on bioactive calcium-silicate cements for dentistry affects surface topography and human marrow stromal cells proliferation. Dental Materials 26(10):974-992. https://doi.org/10.1016/j.dental.2010.06.002

Gandolfi MG, Ciapetti G, Perut F, Taddei P, Modena E, Rossi PL, Prati C (2009) Biomimetic calcium-silicate cements aged in simulated body solutions. Osteoblast response and analyses of apatite coating. Journal of Applied Biomaterials and Biomechanics 7(3):160-170

Mendes MS, Resende LD, Pinto CA, Raldi DP, Cardoso FG, Habitante SM (2017) Radiopacity of mineral trioxide aggregate with and without inclusion of silver nanoparticles. J Contemp Dent Pract 18(6):448-451. https://doi.org/10.5005/jp-journals-10024-2063

Camilleri J (2017) Will bioceramics be the future root canal filling materials? Current Oral Health Reports 4:228-238. https://doi.org/10.1007/s40496-017-0147-x

Özdemir O, Kopac TJM (2022) Recent Progress on the Applications of Nanomaterials and Nano-Characterization Techniques in Endodontics: A Review. 15(15):5109

Raghavendra SS, Jadhav GR, Gathani KM, Kotadia P (2017) Bioceramics in endodontics–a review. Journal of Istanbul University Faculty of Dentistry 51(3 Suppl 1):128-137. https://doi.org/10.17096/jiufd.63659

Chugal N, Mallya SM, Kahler B, Lin LM (2017) Endodontic treatment outcomes. Dental Clinics 61(1):59-80. https://doi.org/10.1016/j.cden.2016.08.009

Washio A, Morotomi T, Yoshii S, Kitamura C (2019) Bioactive glass-based endodontic sealer as a promising root canal filling material without semisolid core materials. Materials 12(23):3967. https://doi.org/10.3390/ma12233967

Wang Z, Shen Y, Haapasalo M (2021) Antimicrobial and antibiofilm properties of bioceramic materials in endodontics. Materials 14(24):7594. https://doi.org/10.3390%2Fma14247594

Da Fonseca T, Da Silva G, Tanomaru‐Filho M, Sasso‐Cerri E, Guerreiro‐Tanomaru J, Cerri PS (2016) In vivo evaluation of the inflammatory response and IL‐6 immunoexpression promoted by Biodentine and MTA Angelus. International Endodontic Journal 49(2):145-153. https://doi.org/10.1111/iej.12435

Camilleri J, Sorrentino F, Damidot D (2013) Investigation of the hydration and bioactivity of radiopacified tricalcium silicate cement, Biodentine and MTA Angelus. Dental materials 29(5):580-593

Camilleri J (2008) The physical properties of accelerated Portland cement for endodontic use. International endodontic journal 41(2):151-157. https://doi.org/10.1111j.1365-2591.2007.01330.x

Coomaraswamy KS, Lumley PJ, Hofmann MPJ (2007) Effect of bismuth oxide radioopacifier content on the material properties of an endodontic Portland cement–based (MTA-like) system. Journal of endodontics 33(3):295-298

Kot K, Kucharski Ł, Marek E, Safranow K, Lipski M (2022) Alkalizing properties of six calcium-silicate endodontic biomaterials. Materials 15(18):6482. https://doi.org/10.3390/ma15186482

About I (2016) Biodentine: from biochemical and bioactive properties to clinical applications. Giornale Italiano di Endodonzia 30(2):81-88. https://doi.org/10.1016/j.gien.2016.09.002

Nayak G, Hasan MF (2014) Biodentine-a novel dentinal substitute for single visit apexification. Restorative dentistry & endodontics 39(2):120-125. https://doi.org/10.5395/rde.2014.39.2.120

Liu W, Zhai D, Huan Z, Wu C, Chang JJ (2015) Novel tricalcium silicate/magnesium phosphate composite bone cement having high compressive strength, in vitro bioactivity and cytocompatibility. Acta biomaterialia 21:217-227. https://doi.org/10.1016/j.actbio.2015.04.012

Wu M, Tao B, Wu W (2022) Anti-washout tricalcium silicate cements modified by konjac glucomannan/calcium formate complex for endodontic applications. Ceramics International 48(17):24298-24309. https://doi.org/10.1016/j.ceramint.2022.04.141

John E, Lothenbach B (2023) Cement hydration mechanisms through time–a review. Journal of Materials Science 58(24):9805-9833. https://doi.org/10.1007/s10853-023-08651-9

Camilleri J (2010) Evaluation of the physical properties of an endodontic Portland cement incorporating alternative radiopacifiers used as root‐end filling material. International endodontic journal 43(3):231-240. https://doi.org/10.1111/j.1365-2591.2009.01670.x

Zhang S, Yang X, Fan M (2013) BioAggregate and iR oot BP Plus optimize the proliferation and mineralization ability of human dental pulp cells. International endodontic journal 46(10):923-929. https://doi.org/https://doi.org/10.1111/iej.12082

Chong BS, Chandler N (2021) Chapter 6: Root canal filling materials and techniques. In: Camilleri J (ed) Endodontic Materials in Clinical Practice. Wiley Blackwell, John Wiley & Sons Inc, Hoboken, USA, pp 181-217

Lodoso-Torrecilla I, van den Beucken JJ, Jansen JA (2021) Calcium phosphate cements: Optimization toward biodegradability. Acta biomaterialia 119:1-12. https://doi.org/10.1016/j.actbio.2020.10.013

Mukhopadhyay S (2018) Bioactive glass-ceramics. Fundam Biomater Ceram:129-152. https://doi.org/10.1016/B978-0-08-102203-0.00006-8

Saud AN, Koç E, Özdemir O (2023) A novel strategy to synthesize bioactive glass based on the eutectic reaction of B2O3–K2O. Ceramics International 49(6):9268-9278. https://doi.org/10.1016/j.ceramint.2022.11.093

Hench LL (2006) The story of Bioglass®. Journal of Materials Science: Materials in Medicine 17(11):967-978. https://doi.org/10.1007/s10856-006-0432-z

Rodríguez-Lozano F, Collado-González M, Tomás-Catalá C, García-Bernal D, López S, Oñate-Sánchez R, Moraleda J, Murcia L (2019) GuttaFlow Bioseal promotes spontaneous differentiation of human periodontal ligament stem cells into cementoblast-like cells. Dental Materials 35(1):114-124. https://doi.org/10.1016/j.dental.2018.11.003

Haapasalo M, Parhar M, Huang X, Wei X, Lin J, Shen Y (2015) Clinical use of bioceramic materials. Endodontic topics 32(1):97-117. https://doi.org/10.1111/etp.12078

Elfakhri F, Alkahtani R, Li C, Khaliq J (2022) Influence of filler characteristics on the performance of dental composites: A comprehensive review. Ceramics International 48(19):27280-27294. https://doi.org/10.1016/j.ceramint.2022.06.314

Wang Z (2015) Bioceramic materials in endodontics. Endodontic topics 32(1):3-30. https://doi.org/10.1111/etp.12075

Mehrotra M, Sawhny A (2022) BIOMIMETIC MATERIALS IN DENTISTRY. DENTOMED PUBLICATION HOUSE, Punjab , India

Pedano MS, Li X, Yoshihara K, Landuyt KV, Van Meerbeek B (2020) Cytotoxicity and bioactivity of dental pulp-capping agents towards human tooth-pulp cells: a systematic review of in-vitro studies and meta-analysis of randomized and controlled clinical trials. Materials 13(12):2670. https://doi.org/10.3390/ma13122670

Kunert M, Lukomska-Szymanska M (2020) Bio-inductive materials in direct and indirect pulp capping—a review article. Materials 13(5):1204. https://doi.org/10.3390/ma13051204

Parirokh M, Torabinejad M, Dummer P (2018) Mineral trioxide aggregate and other bioactive endodontic cements: an updated overview–part I: vital pulp therapy. International endodontic journal 51(2):177-205. https://doi.org/10.1111/iej.12841

Asawaworarit W, Pinyosopon T, Kijsamanmith K (2020) Comparison of apical sealing ability of bioceramic sealer and epoxy resin-based sealer using the fluid filtration technique and scanning electron microscopy. Journal of dental sciences 15(2):186-192. https://doi.org/10.1016/j.jds.2019.09.010

Sfeir G, Zogheib C, Patel S, Giraud T, Nagendrababu V, Bukiet F (2021) Calcium silicate-based root canal sealers: A narrative review and clinical perspectives. Materials 14(14):3965. https://doi.org/10.3390/ma14143965

Vitti RP, Prati C, Silva EJNL, Sinhoreti MAC, Zanchi CH, e Silva MGdS, Ogliari FA, Piva E, Gandolfi MG (2013) Physical properties of MTA Fillapex sealer. Journal of endodontics 39(7):915-918. https://doi.org/10.1016/j.joen.2013.04.015

Balpreet Kaur DRBS, Dr. Mann J.S., and Dr. Navjot Singh Khurana (2020) REVIEW OF BIOCERAMIC IN CONSERVATIVE DENTISTRY & ENDODONTICS. InternationalJournal of Current Research 12(08):13202-13210. https://doi.org/10.24941/ijcr.39475.08.2020

Schäfer E, Bering N, Bürklein S (2015) Selected physicochemical properties of AH Plus, EndoREZ and RealSeal SE root canal sealers. Odontology 103(1):61-65. https://doi.org/10.1007/s10266-013-0137-y

Costa SV, Oliveira JJ, Pinheiro SL, Bueno CES, Ferrari PH (2015) Use of a tricalcium silicate cement in invasive cervical resorption. Endodontic Practice Today 9(3):193-200

Lee KS, Straja SR, Tuncay OC (2003) Perceived long‐term prognosis of teeth with orthodontically resorbed roots. Orthodontics & craniofacial research 6(3):177-191. https://doi.org/10.1034/j.1600-0544.2003.02276.x

Andreasen J (1981) Relationship between surface and inflammatory resorption and changes in the pulp after replantation of permanent incisors in monkeys. Journal of Endodontics 7(7):294-301. https://doi.org/10.1016/S0099-2399(81)80095-7

Ne RF, Witherspoon DE, Gutmann JL (1999) Tooth resorption. QUINTESSENCE INTERNATIONAL-ENGLISH EDITION- 30(1):9-25

Saed SM, Ashley M, Darcey J (2016) Root perforations: aetiology, management strategies and outcomes. The hole truth. British dental journal 220(4):171. https://doi.org/10.1038/sj.bdj.2016.132

Fuks AB (2008) Vital pulp therapy with new materials for primary teeth: new directions and treatment perspectives. Journal of endodontics 34(7):S18-S24. https://doi.org/10.1016/j.joen.2008.02.031

Tomás‐Catalá C, Collado‐González M, García‐Bernal D, Oñate‐Sánchez R, Forner L, Llena C, Lozano A, Castelo‐Baz P, Moraleda J, Rodríguez‐Lozano F (2017) Comparative analysis of the biological effects of the endodontic bioactive cements MTA‐Angelus, MTA Repair HP and NeoMTA Plus on human dental pulp stem cells. International endodontic journal 50(2):e63-e72. https://doi.org/10.1111/iej.12859

Swapnika G, Kumar S, Sajjan GS, Varma M, Praveen D (2022) Bioceramic perforation repair materials. International Journal Of Medical Science And Clinical Research Studies 2(6):528-533. https://doi.org/10.47191/ijmscrs/v2-i6-16

Perassi FT, Bonetti Filho I, Berbert FLCV, Carlos IZ, de Toledo Leonardo R (2004) Secretion of tumor necrosis factor-alpha by mouse peritoneal macrophages in the presence of dental sealers, sealapex and endomethasone. Journal of Endodontics 30(7):534-537. https://doi.org/10.1097/00004770-200407000-00017

Craveiro MA, Fontana CE, de Martin AS, da Silveira Bueno CE (2015) Influence of coronal restoration and root canal filling quality on periapical status: clinical and radiographic evaluation. Journal of endodontics 41(6):836-840. https://doi.org/10.1016/j.joen.2015.02.017

Jeong JW, DeGraft-Johnson A, Dorn SO, Di Fiore PM (2017) Dentinal tubule penetration of a calcium silicate–based root canal sealer with different obturation methods. Journal of endodontics 43(4):633-637. https://doi.org/10.1016/j.joen.2016.11.023

Schmidt S, Schäfer E, Bürklein S, Rohrbach A, Donnermeyer D (2021) Minimal dentinal tubule penetration of endodontic sealers in warm vertical compaction by direct detection via SEM analysis. Journal of Clinical Medicine 10(19):4440. https://doi.org/10.3390/jcm10194440

Özdemir O, Koçak S, Hazar E, Sağlam BC, Coşkun E, Koçak MM (2022) Dentinal tubule penetration of gutta‐percha with syringe‐mix resin sealer using different obturation techniques: A confocal laser scanning microscopy study. Australian Endodontic Journal 48(2):258-265. https://doi.org/10.1111/aej.12546

Furtado TC, de Bem IA, Machado LS, Pereira JR, Só MVR, da Rosa RA (2021) Intratubular penetration of endodontic sealers depends on the fluorophore used for CLSM assessment. Microscopy research and technique 84(2):305-312. https://doi.org/10.1002/jemt.23589

Silva EJ, Hecksher F, Vieira VT, Vivan RR, Duarte MA, Brasil SC, Antunes HS (2020) Cytotoxicity, antibacterial and physicochemical properties of a new epoxy resin-based endodontic sealer containing calcium hydroxide. Journal of Clinical and Experimental Dentistry 12(6):e533. https://doi.org/10.4317/jced.56534

Donnermeyer D, Dammaschke T, Schäfer E (2020) Hydraulic calcium silicate-based sealers: A game changer in root canal obturation. Endod Pract Today 14:197-203

Donnermeyer D, Urban K, Bürklein S, Schäfer E (2020) Physico‐chemical investigation of endodontic sealers exposed to simulated intracanal heat application: epoxy resins and zinc oxide–eugenols. International Endodontic Journal 53(5):690-697. https://doi.org/10.3390/ma14040728

Akcay M, Arslan H, Durmus N, Mese M, Capar ID (2016) Dentinal tubule penetration of AH Plus, iRoot SP, MTA fillapex, and guttaflow bioseal root canal sealers after different final irrigation procedures: A confocal microscopic study. Lasers in surgery and medicine 48(1):70-76. https://doi.org/10.1002/lsm.22446

Fernández R, Restrepo J, Aristizábal D, Álvarez L (2016) Evaluation of the filling ability of artificial lateral canals using calcium silicate‐based and epoxy resin‐based endodontic sealers and two gutta‐percha filling techniques. International endodontic journal 49(4):365-373. https://doi.org/10.1111/iej.12454

Coşkun Başoğlu E, Koçak S, Özdemir O, Koçak MM, Sağlam BC (2023) Efficacy of various activation techniques on tubule penetration of resin‐based and bioceramic root canal sealers: An in vitro confocal microscopy study. Australian Endodontic Journal 49:381-389. https://doi.org/10.1111/aej.12754

Siqueira Jr JF, Rôças IN (2022) Present status and future directions: Microbiology of endodontic infections. International Endodontic Journal 55(3):512-530. https://doi.org/10.1111/iej.13677

Kapralos V, Koutroulis A, Ørstavik D, Sunde PT, Rukke HV (2018) Antibacterial activity of endodontic sealers against planktonic bacteria and bacteria in biofilms. Journal of endodontics 44(1):149-154. https://doi.org/10.1016/j.joen.2017.08.023

Singh G, Gupta I, Elshamy FM, Boreak N, Homeida HE (2016) In vitro comparison of antibacterial properties of bioceramic-based sealer, resin-based sealer and zinc oxide eugenol based sealer and two mineral trioxide aggregates. European journal of dentistry 10(03):366-369. https://doi.org/10.4103/1305-7456.184145

Wang Z, Shen Y, Haapasalo M (2014) Dental materials with antibiofilm properties. Dental Materials 30(2):e1-e16. https://doi.org/10.1016/j.dental.2013.12.001

Oporto GH, Soto-Álvarez C, Salazar LA, Rodríguez-Niklitschek C (2018) Presence of Enterococcus faecalis is associated to endodontic diagnosis in devitalized teeth. Transylvanian Review 26(35):9060-9064

Rodríguez-Niklitschek C, Chuhuaicura P, Oporto GH, RODRÍGUEZ-NIKLITSCHEK C, CHUHUAICURA P, OPORTO G (2021) Antimicrobial Activity of Bioceramic Root Canal Sealers: A Systematic Review. Int J Odontostomat 15(2):348-355. https://doi.org/10.4067/S0718-381X2021000200348.

Abu Hasna A, de Paula Ramos L, Campos TMB, de Castro Lopes SLP, Rachi MA, de Oliveira LD, Carvalho CAT (2022) Biological and chemical properties of five mineral oxides and of mineral trioxide aggregate repair high plasticity: an in vitro study. Scientific Reports 12(1):14123. https://doi.org/10.1038/s41598-022-17854-0

Jerez‐Olate C, Araya N, Alcántara R, Luengo L, Bello‐Toledo H, González‐Rocha G, Sánchez‐Sanhueza G (2022) In vitro antibacterial activity of endodontic bioceramic materials against dual and multispecies aerobic‐anaerobic biofilm models. Australian Endodontic Journal 48(3):465-472. https://doi.org/10.1111/aej.12587

Tanomaru JMG, Storto I, Da Silva GF, Bosso R, Costa BC, Bernardi MIB, Tanomaru-Filho M (2014) Radiopacity, pH and antimicrobial activity of Portland cement associated with micro-and nanoparticles of zirconium oxide and niobium oxide. Dental materials journal 33(4):466-470. https://doi.org/10.4012/dmj.2013-328

Ginebra M (2008) Calcium phosphate bone cements. In: Deb S (ed) Orthopaedic bone cements. Elsevier Ltd, Cambridge, England, pp 206-230

Queiroz MB, Torres FFE, Rodrigues EM, Viola KS, Bosso-Martelo R, Chavez-Andrade GM, Guerreiro-Tanomaru JM, Tanomaru-Filho M (2021) Physicochemical, biological, and antibacterial evaluation of tricalcium silicate-based reparative cements with different radiopacifiers. Dental Materials 37(2):311-320. https://doi.org/10.1016/j.dental.2020.11.014

Lucas CdPTP, Viapiana R, Bosso-Martelo R, Guerreiro-Tanomaru JM, Camilleri J, Tanomaru-Filho M (2017) Physicochemical properties and dentin bond strength of a tricalcium silicate-based retrograde material. Brazilian dental journal 28(1):51-56. https://doi.org/10.1590/0103-6440201701135

Natu VP, Dubey N, Loke GCL, Tan TS, Ng WH, Yong CW, Cao T, Rosa V (2015) Bioactivity, physical and chemical properties of MTA mixed with propylene glycol. Journal of Applied Oral Science 23(4):405-411. https://doi.org/10.1590%2F1678-775720150084

Bramante CM, Kato MM, Assis GFd, Duarte MAH, Bernardineli N, Moraes IGd, Garcia RB, Ordinola-Zapata R, Bramante AS (2013) Biocompatibility and setting time of CPM-MTA and white Portland cement clinker with or without calcium sulfate. Journal of Applied Oral Science 21(1):32-36. https://doi.org/10.1590/1678-7757201302200

Fernandez E, Boltong M, Ginebra M, Driessens F, Bermudez O, Planell J (1996) Development of a method to measure the period of swelling of calcium phosphate cements. Journal of materials science letters 15:1004-1005. https://doi.org/10.1007/BF00241451

Mohammadi Z, Dummer PMH (2011) Properties and applications of calcium hydroxide in endodontics and dental traumatology. International endodontic journal 44(8):697-730. https://doi.org/10.1111/j.1365-2591.2011.01886.x

Attik G, Villat C, Hallay F, Pradelle‐Plasse N, Bonnet H, Moreau K, Colon P, Grosgogeat B (2014) In vitro biocompatibility of a dentine substitute cement on human MG 63 osteoblasts cells: B iodentine™ versus MTA®. International endodontic journal 47(12):1133-1141. https://doi.org/10.1111/iej.12261

Tanomaru‐Filho M, Andrade A, Rodrigues EM, Viola KS, Faria G, Camilleri J, Guerreiro‐Tanomaru J (2017) Biocompatibility and mineralized nodule formation of Neo MTA Plus and an experimental tricalcium silicate cement containing tantalum oxide. International Endodontic Journal 50(Suppl 2):e31-e39. https://doi.org/10.1111/iej.12780

Widbiller M, Lindner S, Buchalla W, Eidt A, Hiller K-A, Schmalz G, Galler K (2016) Three-dimensional culture of dental pulp stem cells in direct contact to tricalcium silicate cements. Clinical oral investigations 20(2):237-246. https://doi.org/10.1007/s00784-015-1515-3

Mukhtar-Fayyad D (2011) Cytocompatibility of new bioceramic-based materials on human fibroblast cells (MRC-5). Oral Surgery, Oral Medicine, Oral Pathology, Oral Radiology, and Endodontology 112(6):e137-e142. https://doi.org/10.1016/j.tripleo.2011.05.042

Sanz JL, Rodríguez-Lozano FJ, Llena C, Sauro S, Forner L (2019) Bioactivity of bioceramic materials used in the dentin-pulp complex therapy: a systematic review. Materials 12(7):1015. https://doi.org/10.3390/ma12071015

Luo T, Liu J, Sun Y, Shen Y, Zou L (2018) Cytocompatibility of Biodentine and iR oot FS with human periodontal ligament cells: An in vitro study. International Endodontic Journal 51(7):779-788. https://doi.org/10.1111/iej.12889

Chang S-W, Lee S-Y, Kang S-K, Kum K-Y, Kim E-C (2014) In vitro biocompatibility, inflammatory response, and osteogenic potential of 4 root canal sealers: Sealapex, Sankin apatite root sealer, MTA Fillapex, and iRoot SP root canal sealer. Journal of endodontics 40(10):1642-1648. https://doi.org/10.1016/j.joen.2014.04.006

Dubey N, Rajan SS, Bello YD, Min K-S, Rosa V (2017) Graphene nanosheets to improve physico-mechanical properties of bioactive calcium silicate cements. Materials 10(6):606. https://doi.org/10.3390/ma10060606

Debelian G, Trope M (2016) The use of premixed bioceramic materials in endodontics. Giornale italiano di endodonzia 30(2):70-80. https://doi.org/10.1016/j.gien.2016.09.001

Fonseca RB, Branco CA, Soares PV, Correr-Sobrinho L, Haiter-Neto F, Fernandes-Neto AJ, Soares CJ (2006) Radiodensity of base, liner and luting dental materials. Clinical Oral Investigations 10(2):114-118. https://doi.org/10.1007/s00784-005-0030-3

Tagger M, Katz A (2003) Radiopacity of endodontic sealers: development of a new method for direct measurement. Journal of Endodontics 29(11):751-755. https://doi.org/10.1097/00004770-200311000-00016

Ochoa-RodrÍguez VM, Wilches-Visbal JH, Roma B, Coaguila-Llerena H, Tanomaru-Filho M, GonÇalves A, Spin-Neto R, Faria G (2020) Radiopacity of endodontic materials using two models for conversion to millimeters of aluminum. Brazilian Oral Research 34(e080). https://doi.org/10.1590/1807-3107bor-2020.vol34.0080

Sen HG, Helvacioglu-Yigit D, Yilmaz A (2023) Radiopacity evaluation of calcium silicate cements. BMC oral health 23(1):491. https://doi.org/10.1186/s12903-023-03182-w

Barbosa WT, García-Carrodeguas R, Fook MV, Rodríguez MA (2019) New cement based on calcium and strontium aluminates for endodontics. Ceramics International 45(16):19784-19792. https://doi.org/10.1016/j.ceramint.2019.06.233

Tanalp J, Karapınar-Kazandağ M, Dölekoğlu S, Kayahan MB (2013) Comparison of the radiopacities of different root-end filling and repair materials. The Scientific World Journal 2013. https://doi.org/10.1155/2013/594950

Mestieri LB, Tanomaru-Filho M, Gomes-Cornelio AL, Salles LP, Bernardi MIB, Guerreiro-Tanomaru JM (2014) Radiopacity and cytotoxicity of Portland cement associated with niobium oxide micro and nanoparticles. Journal of Applied Oral Science 22(5):554-559. https://doi.org/10.1590/1678-775720140209

Shridhar P, Chen Y, Khalil R, Plakseychuk A, Cho SK, Tillman B, Kumta PN, Chun Y (2016) A review of PMMA bone cement and intra-cardiac embolism. Materials 9(10):821. https://doi.org/10.3390%2Fma9100821

Badrigilan S, Shaabani B, Gharehaghaji N, Mesbahi A (2019) Iron oxide/bismuth oxide nanocomposites coated by graphene quantum dots:“Three-in-one” theranostic agents for simultaneous CT/MR imaging-guided in vitro photothermal therapy. Photodiagnosis and photodynamic therapy 25:504-514. https://doi.org/10.1016/j.pdpdt.2018.10.021

Cruvinel DR, Garcia LdFR, Casemiro LA, Pardini LC, Pires-de-Souza FdCP (2007) Evaluation of radiopacity and microhardness of composites submitted to artificial aging. Materials Research 10(3):325-329. https://doi.org/10.1590/S1516-14392007000300021

Van Noort R, Barbour M (2014) introduction to dental materials-E-book. Elsevier Health Sciences

Downloads

Published

2023-10-08

How to Cite

Saud, A., Koç , E., & Özdemir, O. (2023). Current Bio-based Cements and Radioactive Opacifiers in Endodontic Approaches: A Review of the Materials Used in Clinical Practice. European Journal of Therapeutics, 29(4), 930–951. https://doi.org/10.58600/eurjther1849

Issue

Section

Review Articles

Categories