Effects of Pinealectomy and Melatonin Application on Serum Melatonin, Nesfatin-1 and Ghrelin Levels
Abstract views: 189 / PDF downloads: 203
DOI:
https://doi.org/10.58600/eurjther1747Keywords:
Pinealectomy, melatonin, nutrition, nesfatin-1, ghrelin, ratAbstract
Objective: In this study, it was aimed to investigate the relationship between the pineal gland and ghrelin and nesfatin-1 hormones in rats.
Methods: A total of 36 male rats were used in the study, and the animals were divided into 4 groups. Group 1, Control; Group 2, Pinealectomy (Px); Group 3, Px+Melatonin; Group 4 Melatonin. After the end of the experimental applications, melatonin, ghrelin and nesfatin-1 levels (ELISA) were determined in the blood samples taken from the animals.
Results: While pinealectomy resulted in suppression of melatonin levels, melatonin supplementation led to a significant increase in blood melatonin levels (p<0.01). Melatonin supplementation suppressed ghrelin levels, while pinealectomy increased ghrelin levels (P<0.01). On the other hand, Nesfatin-1 levels, which increased with melatonin support, were significantly suppressed by pinealectomy (p<0.01).
Conclusion: The results of the current study show that the pineal gland may have important effects on the hormones ghrelin and nesfatin-1, which play critical roles in nutrition. In conclusion melatonin supplementation inhibites ghrelin, and but increases nesfatin-1.
Metrics
References
Oh-I S, Shimizu H, Satoh T, Okada S, Adachi S, Inoue K, Eguchi H, Yamamoto M, Imaki T, Hashimoto K, Tsuchiya T, Monden T, Horiguchi K, Yamada M, Mori M (2006) Identification of nesfatin-1 as a satiety molecule in the hypothalamus. Nature 443(7112):709–712. https://doi.org/10.1038/nature05162
Shimizu H, Inoue K, Mori M (2007) The leptin-dependent and-independent melanocortin signaling system: regulation of feding and energy expenditure. J Endocrinol. 193(1):1-9. https://doi.org/10.1677/JOE-06-0144
Yosten GL, Samson, WK (2009) Nesfatin-1 exerts cardiovascular actions in brain: possible interaction with the central melanocortin system. Am J Physiol Regul Integr Comp Physiol. 297(2):330-336. https://doi.org/10.1152/ajpregu.90867.2008
Shimizu H, Oh-I S, Okada S, Mori M (2009) Nesfatin-1: an overvie and future clinical application. Endocr J. 56(4):537-543. https://doi.org/10.1507/endocrj.k09e-117
Date Y, Kojima M, Hosoda H, Sawaguchi A, Mondal MS, Suganuma T, Matsukura S, Kangawa K, Nakazato M (2000) Ghrelin, a novel growth hormone-releasing acylated peptide, is synthesized in a distinct endocrine cell type in the gastrointestinal tracts of rats and humans. Endocrinology 141(11):4255-4261. https://doi.org/10.1210/endo.141.11.7757
Fujino K, Inui A, Asakawa A, Kihara N, Fujimura M, Fujimiya M (2002) Ghrelin induces fasted motor activity of the gastrointestinal tract in conscious fed rats. J Physiol. 550(Pt1):227-240. https://doi.org/10.1113/jphysiol.2003.040600
Banks WA, Tschöp M, Robinson SM, Heiman ML (2002) Extent and direction of ghrelin transport across the blood-brain barrier is determined by its unique primary structure. J Pharmacol Exp Ther. 302(2):822-827. https://doi.org/10.1124/jpet.102.034827
Kojima M, Hosoda H, Date Y, Nakazato M, Matsuo H, Kan-Gawa K (1999) Ghrelin is a growth-hormone-releasing acylated peptide from stomach. Nature 402(6762):656-660. https://doi.org/10.1038/45230
Ueno H, Yamaguchi H, Kangawa K, Nakazato M (2005) Ghrelin: a gastric peptide that regulates food intake and energy homeostasis. Regul Pept. 126(1-2):11-19. https://doi.org/10.1016/j.regpep.2004.08.007
Nakahara K, Hayashida T, Nakazato M, Kojima M, Hosoda H, Kangawa K, Murakami N (2003) Effect of chronic treatments with ghrelin on milk secretion in lactating rats. Biochem Biophys Res Commun. 303(3): 751-755. https://doi.org/10.1016/s0006-291x(03)00414-5
Cummings DE, Purnell JQ, Frayo RS, Schmidova K, Wisse BE, Weigle DS (2001) A preprandial rise in plasma ghrelin levels suggests a role in meal initiation in humans. Diabetes. 50(8):1714-1719. https://doi.org/10.2337/diabetes.50.8.1714
Tschop M, Smiley DL, Heiman ML (2000) Ghrelin induces adiposity in rodents. Nature. 407(6806):908-913. https://doi.org/10.1038/35038090
Ariyasu H, Takaya K, Tagami T, Ogawa Y, Hosoda K, Akamizu T, Suda M, Koh T, Natsui K, Toyooka S, Shirakami G, Usui T, Shimatsu A, Doi K, Hosoda H, Kojima M, Kangawa K, Nakao K (2001) Stomach is a major source of circulating ghrelin, and feeding state determines plasma ghrelin-like immunoreactivity levels in humans. J Clin Endocrinol Metab. 86(10):4753-4758. https://doi.org/10.1210/jcem.86.10.7885
Gaskin FS, Farr SA, Banks WA, Kumar VB, Morley JE (2003) Ghrelin-induced feeding is dependent on nitric oxide. Peptides 24(6):913-918. https://doi:10.1016/s0196-9781(03)00160-8
Angers K, Haddad N, Selmaoui B, Thibault L (2002) Effect of melatonin on total food intake and macronutrient choice in rats. Physiol Behav. 80(1):9-18. https://doi.org/10.1016/s0031-9384(03)00215-4.
Canpolat S, Aydin M, Yasar A, Colakoglu N, Yilmaz B, Kelestimur H (2006) Effects of pinealectomy and exogenous melatonin on immunohistochemical ghrelin staining of arcuate nucleus and serum ghrelin leves in the rat. Neurosci Lett. 410(2):132-136. https://doi.org/10.1016/j.neulet.2006.09.071
Senejani AG, Gaupale TC, Unniappan S, Bhargava S (2014) Nesfatin-1/nucleobindin-2 like immunoreactivity in the olfactory system, brain and pituitary of frog, Microhyla ornata. Gen Comp Endocrinol. 202:8-14. https://doi.org/10.1016/j.ygcen.2014.04.007
Abdelraheim SR, Okasha AM, Ghany HM, Ibrahim HM (2015) Ghrelin gene expression in rats with ethanol-induced gastric ulcers: a role of melatonin. Endocr Regul. 49(1):3-10. https://doi.org/10.4149/endo-2015-01-3
Bułdak RJ, Pilc-Gumuła K, Bułdak Ł, Witkowska D, Kukla M, Polaniak R, Zwirska-Korczala K (2015) Effects of ghrelin, leptin and melatonin on the levels of reactive oxygen species, antioxidant enzyme activity and viability of the HCT 116 human colorectal carcinoma cell line. Mol Med Rep. 12(1):2275-2282. https://doi.org/10.3892/mmr.2015.3599
Mustonen AM, Nieminen P, Hyvarinen H (2001) Preliminary evidence that pharmacologic melatonin treatment decreases rat ghrelin levels. Endocrine 16(1):43-46. https://doi.org/10.1385/ENDO:16:1:43
Kuszack J, Rodin MA (1977) New technique of pinealectomy for adult rats. Pro Experimentis 32:283-284. https://doi.org/10.1007/BF02124114
Claustrat B, Leston J (2015) Melatonin: Physiological effects in humans. Neurochirurgie 61(2-3):77-84. https://doi.org/10.1016/j.neuchi.2015.03.002
Baltaci AK, Mogulkoc R, Bediz CS, Kul A, Ugur A (2003) Pinealectomy and zinc deficiency have opposite effects on thyroid hormones in rats. Endocr Res. 29(4):473-481. https://doi.org/10.1081/erc-120026953
Baltaci AK, Mogulkoc R (2007) Pinealectomy and melatonin administration in rats: their effects on plasma leptin levels and relationship with zinc. Acta Biol Hung. 58(4):335-343. https://doi.org/10.1556/ABiol.58.2007.4.1
De Pedro N, Martínez-Alvarez RM, Delgado MJ (2008) Melatonin reduces body weight in goldfish (Carassius auratus): effects on metabolic resources and some feeding regulators. J Pineal Res. 45(1):32-39. https://doi.org/10.1111/j.1600-079X.2007.00553.x.
Bartness TJ, Wade GN (1985) Body weight, food intake and energy regulation in exercising and melatonin-treated Siberian hamsters. Physiol Behav. 35(5):805-808. https://doi.org/10.1016/0031-9384(85)90415-9
Bojkova B, Markova M, Ahlersova E, Ahlers I, Adamekova E, Kubatka P, Kassayova M (2006) Metabolic effects of prolonged melatonin administration and short-termfasting in laboratory rats. Acta Vet Brno. 75:21–32. https://doi.org/10.2754/avb200675010021
Bartness TJ, Wade GN (1984) Photoperiodic control of bodyweight and energy metabolism in Syrian hamsters (Mesocri-cetus auratus): role of pineal gland, melatonin, gonads, and diet. Endocrinology 114(2):492–498. https://doi.org/10.1210/endo-114-2-492
Mustonen AM, Nieminen P, Asikainen J, Saarela S, Kukkonen JV, Hyvärinen H (2004) Continuous melatonin treatment and fasting in the raccoon dog (Nyctereutes procyonoides) vernal body weight regulation and reproduction. Zoolog Sci. 21(2):163-172. https://doi.org/10.2108/zsj.21.163
Mustonen AM, Nieminen P, Hyvärinen H (2002) Effects of continuous light and melatonin treatment on energy metabolism of the rat. J Endocrinol Invest. 25(8):716-723. https://doi.org/10.1007/BF03345106
Baltaci AK, Mogulkoc R (2017) Leptin, NPY, melatonin and zinc levels in experimental hypothyroidism and hyperthyroidism: The relation to zinc. Biochem Genet. 55(3):223-233. https://doi.org/10.1007/s10528-017-9791-z
Fragua V, González-Ortiz G, Villaverde C, Hervera M, Mariotti VM, Manteca X, Baucells MD (2011) Preliminary study: voluntary food intake in dogs during tryptophan supplementation. Br J Nutr. 106(Suppl 1):162-165. https://doi.org/10.1017/S0007114511000535.
Celinski K, Konturek PC, Slomka M, Cichoz-Lach H, Gonciarz M, Bielanski W, Reiter RJ, Konturek SJ (2009) Altered basal and postprandial plasma melatonin, gastrin, ghrelin, leptin and insulin in patients with liver cirrhosis and portal hypertension without and with oral administration of melatonin or tryptophan. J Pineal Res. 46(4):408-414. https://doi.org/10.1111/j.1600-079X.2009.00677.x.
Aydin M, Canpolat S, Kuloğlu T, Yasar A, Colakoglu N, Kelestimur H (2008) Effects of pinealectomy and exogenous melatonin on ghrelin and peptide YY in gastrointestinal system and neuropeptide Y in hypothalamic arcuate nucleus: immunohistochemical studies in male rats. Regul Pept. 146(1-3):197-203. https://doi.org/10.1016/j.regpep.2007.09.009
Kirsz K, Zieba DA (2012) A review on the effect of the photoperiod and melatonin on interactions between ghrelin and serotonin. Gen Comp Endocrinol. 179(2):248-253. https://doi.org/10.1016/j.ygcen.2012.08.025
Su Y, Zhang J, Tang Y, Bi F, Liu JN (2010) The novel function of nesfatin-1:anti hyperglycemia. Biochem Biophys Res Commun. 391:1039-1042. https://doi.org/10.1016/j.bbrc.2009.12.014
Stengel A, Taché Y (2013) Role of brain NUCB2/nesfatin-1 in the regulation of food intake. Curr Pharm Des. 19(39):6955-6959. https://doi.org/10.2174/13816128193913112712 5735
Gunduz B (2002) Daily rhythm in serum melatonin and leptin levels in the Syrian hamster (Mesocricetus auratus). Comp Biochem Physiol A Mol Integr Physiol. 132(2):393-401. https://doi.org/10.1016/s1095-6433(02)00041-7.
Hwang YG, Lee HS (2018) Neuropeptide Y (NPY) or cocaine- and amphetamine-regulated transcript (CART) fiber innervation on central and medial amygdaloid neurons that project to the locus coeruleus and dorsal raphe in the rat. Brain Res. 1689:75-88. https://doi.org/10.1016/j.brainres.2018.03.032.
Downloads
Published
How to Cite
License
Copyright (c) 2023 European Journal of Therapeutics
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
The content of this journal is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Funding data
-
Selçuk University Research Foundation
Grant numbers 15202028