Electrophysiological, Histological and Neurochemical Features of Cochlear Nucleus


Abstract views: 71 / PDF downloads: 107

Authors

  • Mehmet Boşnak Gaziantep Üniversitesi Tıp Fakültesi Fizyoloji AD
  • Ayhan Eralp Gaziantep Üniversitesi Tıp Fakültesi Histoloji ve Embriyoloji AD

DOI:

https://doi.org/10.58600/eurjther.2007-13-2-1383-arch

Keywords:

Cochlear Nucleus, Electrophysiology, Histology, Neurochemical

Abstract

The cochlear nucleus (CN), as the first brain centre in the auditory system and is responsible for sorting the neural signals received from the cochlea, into parallel processing streams for transmission to the assorted higher auditory nuclei. A commissural connection formed between cochlear nuclei through direct projections, thereby provides the first site in the central auditory system at which binaural information is able to influence the ascending auditory signal. This restricted review investigates the nature of commissural projections and the impact of their input upon neurons of the CN through intracellular and extracellular electrophysiological recordings together with both acoustic and electrical stimulation of the contralateral KN. It also investigates electrophysiological, histological and neurochemical features of CN and commissural projections.

Metrics

Metrics Loading ...

References

Ağar E, Boşnak M, Korkmaz A, Demir Ş, Ayyıldız M. The effect of ethanol on the number of cells in the cochlear nucleus of the male adult rat : A stereological study. Neurosci Res Com 2001;28(3):189-200.

Needham K and Paolini AG. Fast inhibition underlies the transmission of auditory information between cochlear nuclei. J Neurolsci 2003;23(15):6357-6361.

Needham K and Paolini AG. The commissural pathway and cochlear nucleus bushy neurons : An in vivo intracellular investigation. Brain Res 2007;1134(1):113-21.

Young ED. Cochlear nucleus. In: The synaptic organization of the brain, (4th ed) (Shepherd GM, ed), New York, Oxford UP 1998:121-157.

Biacabe B, Chevallier JM, Avan P, Bonfils P. Functional anatomy of auditory brainstem nuclei : application to the anatomical basis of brainstem auditory evoked potentials. Auris Nasus Larynx 2001;28:85-94.

Needham K and Paolini AG. Neural timing, inhibition and the nature of stellate cell interaction in the ventral cochlear nucleus. Hear Res 2006;216-217:31-42.

Irvine DR. Anonymous the auditory brainstem, Berlin, Springer-Verlag, 1986.

Schofield BR, Cant NB. Origins and targets of commissural connections between the cochlear nuclei in guinea pigs. J Comp Neurol 1996b;375:128-146.

Alibardi L. Putative commissural and collicular axo-somatic terminals on neurons of the rat ventral cochlear nucleus. J Submicrosc Cytol Pathol 2000;32:555-566.

Cant NB, Benson CG. Parallel auditory pathways: projection patterns of the different neuronal populations in the dorsal and ventral cochlear nuclei. Brain Res Bullet 2003;60:457-474.

Davis KA. Contralateral effects and binaural interactions in dorsal cochlear nucleus. J Assoc Res Otolaryngol 2005;6:280-296.

Kiang NYS, Watanabe T, Thomas EC, Clark LF. Discharge Patterns of Single Fibers in the Cat's Auditory Nerve. Cambridge, MA: MIT Press 1965.

Kiang NYS, Liberman MC, Gage JS, Northrop CC, Dodds LW, Oliver ME. Afferent innervation of the mammalian cochlea. In: Bolis L, Keynes RD, Maddrell SHP, editors. Comparative Physiology of Sensory Systems. Cambridge: Cambridge University Press 1984:143-61.

Kiang NYS, Rho JM, Northrop CC, Liberman MC, Ryugo DK. Hair cell innervation by spiral ganglion cells in adult cat. Science 1982;217:17-177.

Arnesen AR, Osen KK. The cochlear nerve in the cat: topography, cochleotopy and fiber spectrum. J Comp Neurol. 1978;178:661-78.

Godfrey DA, Carter JA, Lowry OH, Matschinsky, FM. Distribution of - amino butyric acid, glycine, glutamate and aspartate in the cochlear nucleus of the rat. J Histochem Cytochem 1978;26:118-126.

Godfrey DA, Farms WB, Godfrey TG, Mikesell NL, Liu J. Amino acid concentrations in rat cochlear nucleus and superior olive. Hear Res 2000;150:189-205.

Caspary DM, Rybak LP, Faingold CL. The effects of inhibitory and excitatory amino - acid neurotransmitters on the response properties of brainstem auditory neurons. In : Drescher DG (ed), Auditory Biochemistry, Charles CT, Springfield 1985:198-226.

Caspary DM. Electrophysiological studies glycinergic mechanisms in auditory brain stem structures. In : Ottersen OP and Storm- Mathisen J (eds), Glycine Neurotransmission, Wiley, Chichester 1990:453-483.

Oertel D, Wickesberg RE. Glycinergic inhibition in the cochlear nuclei : evidence for tuberculoventral neurons being glycinergic. In : Merchan MA, Juiz JM, Godfrey DA, Mugnaini E (eds), The Mammalian Cochlear Nuclei: Organization and Function, Plenum, New York 1993:225-237.

Zhang S, Oertel D. Neuronal circuits associated with the output of the dorsal cochlear nucleus through fusiform cells. J Neurophysiol 1994;71:914-930.

Lim R, Alvarez FJ, Walmsley B. GABA mediates presynaptic inhibition at glycinergic synapses in a rat auditory brainstem nucleus. J Physiol 2000;525:447-459.

Wenthold RJ. Release of endogenous glutamic acid, aspartic acid and GABA from cochlear nucleus slices. Brain Res 1979;162:338-343.

Canzek V, Reubi JC. The effect of cochlear nevre lesion on the release of glutamate, aspartate, and GABA from cat cochlear nucleus, in vitro. Exp Brain Res 1980;38:437-441.

Potashner SJ, Morest DK, Oliver DL, Jones DR. Identification of glutamatergic and aspartatergic pathways in the auditory system. In : Drescher DG (ed), Auditory Biochemistry, Charles CT, Springfield 1985:141-162.

Potashner SJ, Benson CG, Ostapoff EM, Lindberg N, Morest DK. Glycine and GABA : transmitter candidates of projections descending to the cochlear nucleus. In : Merchan MA, Juiz JM, Godfrey DA, Mugnaini E (eds), The Mammalian Cochlear Nuclei: Organization and Function, Plenum, New York 1993:195-210.

Glendenning KK, Baker BN. Neuroanatomical distribution of receptors for three potential inhibitory neurotransmitters in the brain stem auditory nuclei of the cat. J Comp Neurol 1988;275:288-308.

Juiz JM, Albin RL, Helfert RH, Altschuler RA. Distribution of GABAA and GABAB binding sites in the cochlear nucleus of the guinea pig. Brain Res 1994;639:193-201.

Cant NB, Morest DK. The bushy cells in the anteroventral cochlear nucleus of the cat. A study with the electron microscope. Neurosci 1979b;4:1925-1945.

Ostapoff EM, Morest DK. Synaptic organization of globular bushy cells in the ventral cochlear nucleus of the cat: a quantitative study. J Comp Neurol. 1991;314:598-613.

Cant NB. The cochlear nucleus: neuronal types and their synaptic organization. In: The Mammalian Auditory Pathway: neuroanatomy. Webster DB, Popper AN, Fay RR (eds), New York, Springer-Verlag 1992:66-116.

Altschuler RA, Juiz JM, Shore SE, Bledsoe SC, Jr., Helfert RH, Wenthold RJ. Inhibitory amino acid synapses and pathways in the ventral cochlear nucleus. In: The Mammalian Cochlear Nuclei: Organization and Function. Merchan MA, Juiz JM, Godfrey DA, Mugnaini E (eds), New York, Plenum Press 1993:211-223.

Tolbert LP, Morest DK. The neuronal architecture of the anteroventral cochlear nucleus of the cat in the region of the cochlear nerve root: electron microscopy. Neurosci 1982a;7:3053-3067.

Uchizono K. Characteristics of excitatory and inhibitory synapses in the central nervous system of the cat. Nature 1965;207:642-643.

Wenthold RJ, Zempel JM, Parakkal MH, Reeks KA, Altschuler RA. Immunocytochemical localization of GABA in the cochlear nucleus of the guinea pig. Brain Res 1986;380:7-18.

Wenthold RJ, Parakkal MH, Oberdorfer MD, Altschuler RA. Glycine receptor immunoreactivity in the ventral cochlear nucleus of the guinea pig. J Comp Neurol 1988;276:423-435.

Juiz JM, Helfert RH, Bonneau JM, Wenthold RJ, Altschuler RA. Three classes of inhibitory amino acid terminals in the cochlear nucleus of the guinea pig. J Comp Neurol 1996;373:11-26.

Josephson EM, Morest D. A quantitative profile of the synapses on the stellate cell body and axon in the cochlear nucleus of the chinchilla. J Neurocytol 1998;27:841-864.

Cant NB. The fine structure of two types of stellate cells in the anterior division of the anteroventral cochlear nucleus of the cat. Neurosci 1981;6:2643-2655.

Oliver DL, Potashner SJ, Jones DR, Morest DK. Selective labeling of spiral ganglion and granule cells with D-aspartate in the auditory system of cat and guinea pig. J Neurosci 1983;3:455-472.

Altschuler RA, Wenthold RJ, Schwartz AM, Haser WG, Curthoys NP, Parakkal MH, Fex J. Immunocytochemical localization of glutaminase-like immunoreactivity in the auditory nerve. Brain Res 1984;291:173-178.

Hackney CM, Osen KK, Ottersen OP, Storm-Mathisen J, Manjaly G. Immunocytochemical evidence that glutamate is a neurotransmitter in the cochlear nerve: a quantitative study in the guinea-pig anteroventral cochlear nucleus. Eur J Neurosci 1996;8:79-91.

Wickesberg RE, Oertel D. Auditory nerve neurotransmitter acts on a kainate receptor: evidence from intracellular recordings in brain slices from mice. Brain Res 1989;486:39-48.

Ottersen OP, Landsend AS. Organization of glutamate receptors at the synapse. Eur J Neurosci 1997;9:2219-2224.

Rubio ME, Wenthold RJ. Glutamate receptors are selectively targeted to postsynaptic sites in neurons. Neuron 1997;18: 939-950.

Gardner SM, Trussell LO, Oertel D. Correlation of AMPA receptor subunit composition with synaptic input in the mammalian cochlear nuclei. J Neurosci 2001;21:7428-7437.

Kemmer M, Vater M. Cellular and subcellular distribution of AMPA-type glutamate receptor subunits and metabotropic glutamate receptor 1alpha in the cochlear nucleus of the horseshoe bat (Rhinolophus rouxi). Hear Res 2001;156:128-142.

McDonald DM, Rasmussen GL. Ultrastructural characteristics of synaptic endings in the cochlear nucleus having acetylcholinesterase activity. Brain Res 1971;28:1-18.

Yao W, Godfrey DA. Vesicular acetylcholine transporter in the rat cochlear nucleus: an immunohistochemical study. J Histochem Cytochem 1999a;47:83-90.

Godfrey DA, Beranek KL, Carlson L, Parli JA, Dunn JD, Ross CD. Contribution of centrifugal innervation to choline acetyltransferase activity in the cat cochlear nucleus. Hear Res 1990;49:259-279.

Yao W, Godfrey DA. Immunohistochemistry of muscarinic acetylcholine receptors in rat cochlear nucleus. Hear Res 1995;89:76-85.

Yao W, Godfrey DA, Levey AI. Immunolocalization of muscarinic acetylcholine subtype 2 receptors in rat cochlear nucleus. J Comp Neurol 1996;373:27-40.

Caspary DM, Havey DC, Faingold CL. Effects of acetylcholine on cochlear nucleus neurons. Exp Neurol 1983;82:491-498.

Chen K, Waller HJ, Godfrey DA. Effects of endogenous acetylcholine on spontaneous activity in rat dorsal cochlear nucleus slices. Brain Res 1998;783:219-226.

Kossl M, Vater M, Schweizer H. Distribution of catecholamine fibers in the cochlear nucleus of horseshoe bats and mustache bats. J Comp Neurol 1988;269:523-534.

Kossl M, Vater M. Noradrenaline enhances temporal auditory contrast and neuronal timing precision in the cochlear nucleus of the mustache bat. J Neurosci 1989;9:4169-4178.

Klepper A, Herbert H. Distribution and origin of noradrenergic and serotonergic fibers in the cochlear nucleus and inferior colliculus of the rat. Brain Res 1991;557:190-201.

Ebert U. Noradrenaline enhances the activity of cochlear nucleus neurons in the rat. Eur J Neurosci 1996;8:1306-1314.

Mugnaini E. GABA neurons in the superficial layers of the rat dorsal cochlear nucleus: light and electron microscopic immunocytochemistry. J Comp Neurol 1985;235:61-81.

Altschuler RA, Betz H, Parakkal MH, Reeks KA, Wenthold RJ. Identification of glycinergic synapses in the cochlear nucleus through immunocytochemical localization of the postsynaptic receptor. Brain Res 1986;369:316-320.

Adams JC, Mugnaini E. Patterns of glutamate decarboxylase immunostaining in the feline cochlear nuclear complex studied with silver enhancement and electron microscopy. J Comp Neurol 1987;262:375-401.

Rubio ME, Juiz JM. Differential distribution of synaptic endings containing glutamate, glycine, and GABA in the rat dorsal cochlear nucleus. J Comp Neurol 2004;477:253-272.

Ross CD, Godfrey DA, Parli JA. Amino acid concentrations and selected enzyme activities in rat auditory, olfactory, and visual systems. Neurochem Res 1995;20:1483-1490.

Friauf E, Hammerschmidt B, Kirsch J. Development of adult-type inhibitory glycine receptors in the central auditory system of rats. J Comp Neurol 1997;385:117-134.

Staatz-Benson C, Potashner SJ. Uptake and release of glycine in the guinea pig cochlear nucleus after axotomy of afferent or centrifugal fibers. J Neurochem 1988;51:370-379.

Friauf E, Aragon C, Lohrke S, Westenfelder B, Zafra F. Developmental expression of the glycine transporter GLYT2 in the auditory system of rats suggests involvement in synapse maturation. J Comp Neurol 1999;412:17-37.

Backoff PM, Shadduck Palombi P, Caspary DM. Gamma- aminobutyric acidergic and glycinergic inputs shape coding of amplitude modulation in the chinchilla cochlear nucleus. Hear Res 1999;134:77-88.

Saint Marie RL, Morest DK, Brandon CJ. The form and distribution of GABAergic synapses on the principal cell types of the ventral cochlear nucleus of the cat. Hear Res 1989;42:97-112.

Campos ML, de Cabo C, Wisden W, Juiz JM, Merlo D. Expression of GABA(A) receptor subunits in rat brainstem auditory pathways: cochlear nuclei, superior olivary complex and nucleus of the lateral lemniscus. Neurosci 2001;102:625-638.

Ebert U, Ostwald J. GABA can improve acoustic contrast in the rat ventral cochlear nucleus. Exp Brain Res 1995;104:310-322.

Lujan R, Shigemoto R, Kulik A, Juiz JM. Localization of the GABAB receptor 1a/b subunit relative to glutamatergic synapses in the dorsal cochlear nucleus of the rat. J Comp Neurol 2004;475:36-46.

Moore JK, Osen KK, Storm-Mathisen J, Ottersen OP. gamma-Aminobutyric acid and glycine in the baboon cochlear nuclei: an immunocytochemical colocalization study with reference to interspecies differences in inhibitory systems. J Comp Neurol 1996;369:497-519.

Osen KK, Ottersen OP, Storm-Mathisen J. Colocalization of glycine-like and GABA-like immunoreactivities. A semi- quantitative study of individual neurons in the dorsal cochlear nucleus of cat. In: Glycine neurotransmission. Ottersen OP, Storm-Mathisen J (eds), New York, John Wiley & Sons, 1990:417-451.

Jonas P, Bischofberger J, Sandkuhler J. Corelease of two fast neurotransmitters at a central synapse. Sci 1998;281:419-424.

Cascio M. Structure and function of the glycine receptor and related nicotinicoid receptors. J Biol Chem 2004;79:19383-19386.

Caspary DM, Rybak LP, Faingold CL. Baclofen reduces tone-evoked activity of cochlear nucleus neurons. Hear Res 1984;13:113-122.

Misgeld U, Bijak M, Jarolimek W. A physiological role for GABAB receptors and the effects of baclofen in the mammalian central nervous system. Prog Neurobiol 1995;46:423-462.

Isaacson JS. GABAB receptor-mediated modulation of presynaptic currents and excitatory transmission at a fast central synapse. J Neurophysiol 1998;80:1571-1576.

Sakaba T, Neher E. Direct modulation of synaptic vesicle priming by GABAB receptor activation at a glutamatergic synapse. Nature 2003;424:775-778.

Chu Z, Hablitz JJ. GABAB receptor-mediated heterosynaptic depression of excitatory synaptic transmission in rat frontal neocortex. Brain Res 2003;959:39-49.

Lei S, McBain CJ. GABAB receptor modulation of excitatory and inhibitory synaptic transmission onto rat CA3 hippocampal interneurons. J Physiol (Lond) 2003;546:439-453.

Kolaj M, Bai D, Renaud LP. GABAB receptor modulation of rapid inhibitory and excitatory neurotransmission from subfornical organ and other afferents to median preoptic nucleus neurons. J Neurophysiol 2004;92:111-122.

Babalian, A.L., Ryugo, D.K., Vischer, M.W., Rouiller, E.M. Inhibitory synaptic interactions between cochlear nuclei: evidence from an in vitro whole brain study. NeuroReport 1999;10:1913-1917.

Babalian, A.L., Jacomme, A.V., Doucet, J.R., Ryugo, D.K., Rouiller, E.M., Commissural glycinergic inhibition of bushy and stellate cells in the anteroventral cochlear nucleus. NeuroReport 2002;13:555-558.

Alibardi L. Ultrastructural and immunocytochemical characterization of commissural neurons in the ventral cochlear nucleus of the rat. Ann. Anat 1998;180:427-438.

Pfeiffer RR. Classification of response patterns of spike discharges for units in the cochlear nucleus: tone-burst stimulation. Exp Brain Res 1966;1:220-235.

Liberman MC. Auditory-nerve response from cats raised in a low-noise chamber. J Acoust Soc Am. 1978;63:442-455.

Young ED, Robert JM, Shofner WP. Regularity and latency of units in ventral cochlear nucleus: implications for unit classification and generation of response properties. J Neurophysiol 1988;60:1-29.

Mast TE. Binaural interaction and contralateral inhibition in dorsal cochlear nucleus of the chinchilla. J Neurophysiol 1970;33:108-115.

Young ED, Brownell WE. Responses to tones and noise of single cells in dorsal cochlear nucleus of unanesthetized cats. J Neurophysiol 1976;39:282-300.

Joris PX, Smith PH. Temporal and binaural properties in dorsal cochear nucleus and its output tract. J Neurosci 1998;18:10157-10170.

Shore SE, Sumner CJ, Bledsoe SC, Lu J. Effects of contralateral sound stimulation on unit activity of ventral cochlear nucleus neurons. Exp Brain Res 2003;153:427-435.

Downloads

Published

2007-05-01

How to Cite

Boşnak, M., & Eralp, A. (2007). Electrophysiological, Histological and Neurochemical Features of Cochlear Nucleus. European Journal of Therapeutics, 13(2), 42–49. https://doi.org/10.58600/eurjther.2007-13-2-1383-arch

Issue

Section

Review Articles