A Rare Cause of Uptake of Radioactive Iodine by Non-Lactating Breast Tissue in A Patient with Papillary Thyroid Carcinoma: Prolactinoma

Zeynel Abidin Sayiner1, Umut Elboğa2, Azer Abiyev3, Mesut Özkaya1, Ersin Akarsu1

1Division of Endocrinology and Metabolism, Gaziantep University, School of Medicine, Gaziantep, Turkey
2Department of Nuclear Medicine, Gaziantep University, School of Medicine, Gaziantep, Turkey
3Department of Internal Medicine, Gaziantep University, School of Medicine, Gaziantep, Turkey

ABSTRACT

We report a case of a post-menopausal woman who underwent total thyroidectomy due to papillary thyroid carcinoma followed by radioactive iodine therapy. After radioactive iodine therapy, total body scintigraphy (TBS) using radioactive iodine (I-131) was performed, and we observed uptake of I-131 by breast tissues. The scintigraphic and associated clinical characteristics of uptake of I-131 by breast tissues in a non-breastfeeding patient with thyroid cancer were unexpected findings. In this patient, elevated serum prolactin levels were documented at the time when the uptake of I-131 by the breast tissues was observed. We conducted hypophysis magnetic resonance imaging and detected a pituitary adenoma. Medical treatment with cabergoline was provided to this patient. When prolactin levels were normalized, uptake of I-131 by breast tissues was no longer evident on TBS.

Keywords: Papillary thyroid cancer, prolactinoma, uptake of radioactive iodine

INTRODUCTION

Total body scintigraphy (TBS) using radioactive iodine (I-131) has been a beneficial diagnostic procedure for evaluating the possible metastasis of differentiated thyroid cancer and the presence of residual thyroid bed remnants after surgery (1). Uptake of I-131 by normal non-lactating post-menopausal breast tissues is rarely observed. This finding may lead to misdiagnosis. It may appear to clinicians as a metastasis. We report a case of uptake of I-131 by the breast tissues in a patient with thyroid cancer who had hyperprolactinemia due to pituitary adenoma in the hypophysis.

CASE PRESENTATION

A 53-year-old female patient underwent total thyroidectomy and radioactive iodine ablation for papillary thyroid carcinoma (stage T2N0M0). Update of I-131 by breast tissues was observed on post-therapy TBS (Figure 1). She underwent mammography and breast sonography, and there was no lesion on the breast tissues. We found that the patient’s prolactin level was 117 ng/mL (normal range, 5-20 ng/mL), but the patient had no symptom of hyperprolactinemia, such as galactorrhea. At this time, we found that the patient’s thyroid stimulating hormone (TSH) level was 40 mU/L (normal range, 0-4 mU/L). We believed that the cause of the hyperprolactinemia was high the TSH level. We searched for other causes of hyperprolactinemia. But after TSH normalization with thyroid hormone replacement, we observed the persistence of prolactinemia. In euthyroid state, prolactin level was 143 ng/mL. There were no chronic diseases, such as chronic renal disease and liver cirrhosis. All laboratory studies returned to normal limits. She had not been using any drugs, especially antipsychotic drugs. When we investigated for hypothalamo-pituitary causes, we detected hypophysis adenoma via magnetic resonance imaging (Figure 2). We administered cabergoline (0.5 mg per week) to the patient. Her prolactin level improved to 12.6 mg/mL 3 months later. After prolactin level normalization, we performed TBS, and there were no update of I-131 by the breast tissues (Figure 3). Written informed consent was obtained from the patient.

DISCUSSION

The radioactive iodine treatment for differentiated thyroid carcinomas has its effect via sodium/iodide symporter (NIS). NIS is located in healthy and neoplastic thyroid cells and is stimulated by TSH (2, 3). This system has been shown in breast tissues during the lactation period and in some breast tumors. However, this system has not been shown in breast tissues that are not in the lactation period (4). The expression of NIS in breast tissues is under hormonal control. There are prolactin receptors on some breast tumors and in normal breast tissues during lactation (5). Therefore, recent...
experimental animal studies have shown that prolactin can stimulate the uptake of iodine by normal breast tissues (6). Bruno et al (7) administered radioactive iodine ablation to 302 patients with papillary and follicular thyroid carcinoma. Later, when they performed I-131 TBS, they found that, only 4 patients showed evidence of uptake of I-131 by breast tissues; in further examinations, prolactin secreting pituitary microadenoma was detected in only 1 patient. Further, 2 of these 4 patients had been exposed to a psychological chronic stimulation of prolactin and 1 to some unknown kind of agent responsible for the galactorrhea.

In another study, uptake of I-131 was observed in 2 patients with papillary thyroid carcinoma during TBS. But interestingly both patients were in post-menopausal period like in our case. Their breast tissue did not have lactation function (2). But both cases had specific features. One of the patient had been using risperidone that was an antidopaminergic drug (8). The other patient had chronic renal failure, and she was undergoing hemodialysis. In blood tests, both patients showed hyperprolactinemia. It is well known that chronic renal failure and risperidone can cause hyperprolactinemia (9, 10). They were treated with cabergoline, and their prolactin levels became normalized. After that, TBS was performed and no uptake of I-131 by breast tissues was observed.

Ahn et al. (11) reported a case of a patient with thyroid malignancy who underwent radioactive iodine therapy, and uptake of radioactive iodine by breast tissues was detected on post-treatment TBS. The patient had prolactinemia due to amisulpride.

CONCLUSION
This case reports the positive correlation between prolactin level and uptake of I-131 by breast tissues regardless of patients’
menopausal state or presence or absence of lactation. It makes us believe that endogenous hyperprolactinemia can be a reason for the significant uptake of I-131 by the tissues of non-lactating breasts, and hypophysis adenoma should be considered as a confounding factor.

Informed Consent: Written informed consent was obtained from patient who participated in this case.

Peer-review: Externally peer-reviewed.


Conflict of Interest: The authors have no conflicts of interest to declare.

Financial Disclosure: The authors declared that this study has received no financial support.

REFERENCES


