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ABSTRACT
Helminths are multicellular organisms causing chronic infections affecting nearly one-third of the global population. They are 
experts at immunomodulation, and pathologic outcomes are generally observed in patients with immunodeficiencies or with 
exaggerated levels of anti-helminth immune responses. Elimination of helminths is usually mediated by T-helper type-2 (Th2) 
immune responses, characterized by the induction of Immunoglobulin E (IgE) release, increase in eosinophil and mast cell levels, 
and elevation in the production levels of Th2 cytokines. However, the triggered mechanisms may also depend on the location of 
the parasite. This is because tissue invasion, an immune evasion strategy for parasites, was considered to activate more Thelper 
type 1 (Th1) cells in tissues. During chronic infections, immune response regulatory pathways become more influential, there-
by reducing the levels of the peripheral T-cell-mediated responses against parasitic antigens. The resultant immune response is 
termed as “modified Th2 response” and is characterized by enhanced levels of anti-inflammatory cytokine production and regu-
latory immune cells as well as high IgG4/IgE ratios. Immunomodulation during chronic helminth infection is not limited to only 
parasite-specific responses. It can influence the efficiency of vaccination, host susceptibility to infections, and allergen or autoan-
tigen responses. This review discusses anti-helminth immune responses. Moreover, it highlights current literature on the effects of 
chronic helminth infections on host health as well as their possible use as a treatment strategy against autoimmune, autoinflam-
matory, and allergic diseases. 
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INTRODUCTION
Helminths are parasitic multicellular organisms that include 
nematodes, cestodes, and trematodes (1). Although they are one 
of the most common infectious agents infecting nearly one-third 
of the global population today, they cause mostly asymptomatic 
infections (2,3). Pathologic outcomes can be observed in immu-
nocompromised individuals and also in those with high levels 
of immune response triggered against low parasitic burden (3).

Helminths can exploit the host immune system for their own 
benefit and can survive within the host for weeks, months, or 
even years. They can utilize a wide range of immunomodulato-
ry mechanisms, such as the secretion of molecules, that inhibit 
immune cell function and induce regulatory pathways (3). Since 
they are considered as experts in immunomodulation, helminths 
are currently being studied for their use in the treatment of al-
lergic and autoimmune diseases. Autoimmune and abnormal 
T-helper type-2 (Th2 cells) cell-related disease (such as asthma 
or allergic rhinitis) levels in helminth-infected populations are 
relatively low (4). According to the “old friend” hypothesis, micro-

organisms, including helminths, evolved along with mammalian 
hosts over the ages and acted as triggers of immunomodulator 
mechanisms required for the development of a healthy immune 
system (1).

CLINICAL AND RESEARCH CONSEQUENCES

Effective Immune Response Triggered Against Helminths
Helminths are generally associated with host Th2 immune re-
sponses, which can be initiated to repair tissue damage as well 
as in disease states such as allergy and asthma (5). Because of this 
association, Th2 cells are thought to be triggered to improve re-
sistance to helminths as well as to repair tissue damage caused by 
helminths colonizing tissues (3). The response is characterized by 
Immunoglobulin E (IgE) release, eosinophilia, mastocytosis, gob-
let cell differentiation, increased mucus production, and the pro-
duction of Th2 cytokines such as interleukin-4 (IL-4) and IL-5 (6).

Although T-cells were initially thought to be the only source for 
Th2 cytokines, innate immune cells can also function as a reservoir 
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for these cytokines. For example, previous studies have revealed 
that basophils, eosinophils, multipotent progenitor type 2 cells 
(MPPtype2), and type 2 innate lymphoid cells (ILC-2) are important 
sources for IL-4, IL-13, and IL-5 (7). Among those, ILC-2 was shown 
to be dependent on adaptive immune cells such that in the ab-
sence of B-cells and T-cells, they failed to facilitate worm expulsion 
from the host (8, 9). In addition to these cells, intestinal epithelial 
cells (IECs) were also shown to engage in the development of Th2 
immune responses (10). Inability to develop Th2 immunity during 
helminth infections in mice has been associated with the disap-
pearance of intestinal protective properties and subsequent fatal 
sepsis, resulting in intestinal bacterial infection (3). 

While Th2 cells rarely kill parasites, they limit the infection, reduce 
the viability and reproductive properties of helminths, and physi-
cally remove them from the mucosal membranes (11). Neverthe-
less, the effector mechanisms may vary depending on the location 
of the parasite, whether in the duct lumen or in the tissue. Removal 
of parasites from lumenal regions depends on IgE-mediated mast 
cell degranulation and intestinal anaphylaxis, which is responsible 
for muscle contractility, fluid stimulation, vascular permeability en-
hancement, immune cell recruitment, and mucus secretion (11). 
Although the expulsion was triggered by Th2 cytokine release (6), 
it was mediated in the absence of adaptive immune system by IECs 
(8). Immunoglobin A (IgA) antibodies, another mediator, released 
during Th2 immunization are essential for the neutralization of 
metabolic enzymes as well as influence parasite nutrition (11).

Furthermore, tissue invasion, which is considered as a strategy for 
the parasite to evade from anti-helminth Th2 responses, activates 
T helper type 1 (Th1) immunity in these regions (11). Trematode 
strains such as Schistosoma spp. were suggested to require collabo-
ration between Th2 and Th1 responses for effective protection (11). 
Th1 immunity mainly targets adult parasites, and the Th2 skewed 
response is initiated after parasite’s eggs are produced (12). The ab-
sence of effective Th2 immunity at this stage may result in granulo-
matous inflammation mediated by Th1 and T helper type 17 (Th17) 
cells, thereby causing severe damage and death to the surrounding 
tissues (12). Effector mechanisms against helminths in tissues main-
ly include antibody-dependent cellular cytotoxicity, nitric oxide 
release by classically activated M1 macrophages, and granuloma 
formation (11).

Granuloma formation is frequently associated with Th1 immu-
nity; however, it may also be detected during Th2 immune re-

sponses (11). Neutrophils and macrophages are among the first 
line of defence. They are responsible for the rapid development 
of a granulomatous build-up involving Th2 cells, eosinophils, 
and alternatively activated M2 macrophages (12). As time elaps-
es after granuloma formation, fibrous extracellular matrix levels 
in granulomas increase. Controlled fibrogenesis are beneficial 
because of the limitation of granulomatous content, thereby 
preventing inflammation and damage caused by the spread of 
toxic egg products (13). Excessive fibrosis can be a serious com-
plication, and stimulated tissue fibrosis may become pathologic 
(14). In addition, neutrophils may be invoked by helminths and 
may be effective against the parasites (15).

In contrast to classically activated M1 macrophages associated 
with high expression levels of pro-inflammatory cytokines and 
Th1 responses, M2 macrophages that are differentiated during 
the TH2 immune responses participate in tissue remodelling and 
tumour progression as well as in anti-parasitic immunity (16). In 
addition to the contribution of control of parasitic tissue dam-
age, M2 macrophages were also shown to be effective in pro-
viding protection against helminth infections by influencing the 
effects of Th2 cytokines, intestinal smooth muscle contractility, 
and worm expulsion (17).

The importance of the dendritic cells (DC) during the antigen 
presentation process in the initiation of anti-helminth immune 
responses is under debate (7). A recent study emphasized that 
basophils are involved in antigen presentation during Trichuris 
muris (T. muris) infection (18). Selective elimination of basophils 
from mice considerably reduced the levels of IL-4 mRNA ex-
pression and Th2 cytokine-dependent goblet cell hyperplasia 
in mice. In the same study, basophils were reported to induce 
CD4+ T cell proliferation in an MHC class II-dependent manner 
in vitro (18).

Regulatory Immune Response Triggered by Helminths
Peripheral T cells are known to be rendered insensitive to para-
site antigens during chronic helminth infections (2). Helminthic 
parasites can directly act on the host immune cells to block their 
function and modify the immune response for their own sur-
vival within the host. The regulatory pathways triggered for this 
purpose causes the development of a host immune response 
known as the “modified Th2 response.” This response, associated 
with anti-inflammatory cytokine production, such as IL-10 and 
Transforming Growth Factor (TGF)-β, and high IgG4/IgE ratios, 
besides regulatory immune cells, is likely involved in the Th2 im-
mune reaction and play an active role in limitation of the overt 
symptoms frequently seen in helminth disease (4, 11).

Among the regulatory immune cells activated during the an-
ti-helminth immune response, regulatory T-cells (Treg cells) com-
prise various subgroups. The cells in which Foxp3 transcription 
factor expression is initiated following the developmental stages 
in the thymus are called “natural” Treg (nTreg); cells that initiate 
Foxp3 expression in peripheral tissues are termed “induced” Treg 
cells. Treg cells such as type 1 regulatory (Tr1) cells do not pos-
sess any detectable level of Foxp3 expression. All these Treg pop-
ulations can exert immunosuppressive effects by releasing IL-10 

Main Points:

• While the elimination of helminths is mainly mediated by 
the induction of Th2-mediated immune response, tissue 
invasion can lead to activation of more Th1 cells.

•  “Modified Th2 response”, which is observed during chronic 
helminth infections, is characterized by enhanced levels of 
anti-inflammatory cytokine production and regulatory im-
mune cells as well as high IgG4/IgE ratios.

• The immunomodulation during chronic helminth infection 
can influence the efficiency of vaccination, host susceptibil-
ity to infections, and allergen or autoantigen responses.
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and TGF-β cytokines (19). Among those populations, in particu-
lar, Foxp3+ Treg cells have an important role in the development 
of self-tolerance, such that mutations affecting Foxp3 expression 
were shown to cause autoimmune diseases by influencing Treg 
cell expression and/or functional levels (19).

Microfilaremic filariasis (Mf) patients were previously reported to 
have higher Foxp3+ Treg cell levels than the control group pa-
tients (20). In addition, an in vitro study revealed an elevation of 
Th2 in Mf-positive patients when Treg cells were depleted (21). 
Although an increase in nTreg marker expression levels was ob-
served during asymptomatic infection, such an increase was not 
observed in patients with filarial lymphedema (22). Therefore, the 
pathogenesis of lymphatic pathology during filarial infections is 
associated with the strengthening of pro-inflammatory respons-
es and lowering of anti-inflammatory cell subset levels (22).

Tr1 cells have also been implicated in immunosuppression 
during infection with Onchocerca volvulus (O. volvulus), another 
parasitic filarial nematode worm (23). Peripheral blood mononu-
clear cells from individuals suffering from general oncocytosis 
produce higher levels of IL-10, and the observed decline in T-cell 
proliferative levels in this group can be reversed by anti-IL-10 
and anti-TGF-β antibodies (24). In addition to these cases, Treg 
cells have also been associated with the pathogenesis of Schis-
tosoma mansoni (S. mansoni), S. Haematobium, and hookworm 
infections (2).

There are other adaptive immune cells called regulatory B-cells 
(Breg) that are effective in the modulation of the immune re-
sponses. Like Treg cells, Breg cells were shown to be influential 
in the suppression of autoimmune diseases (25). Similar to Treg 
cells, Breg cells are thought to suppress pathogenic T cells and 
autoreactive B cells via cellular contact and release of cytokines 
such as IL-10 and TGF-β (25). Besides, they are also known to 
suppress immune responses by inducing Treg differentiation, 
suppressing the DC antigen-presentation function and releasing 
anti-inflammatory antibody isotypes such as IgG4 (26). In mouse 
experiments, the induction of Breg cells has been previously 
documented during infections with S. mansoni and Heligoso-
moides polygyrus (2).

DCs play an important role in immune responses induced by 
helminths. Accordingly, mice injected with DCs treated with hel-
minth extracts in vitro have been reported to induce Th2 immu-
nologic responses (27). In contrast, DCs have also been report-
ed to trigger mechanisms responsible for the regulation of the 
immune responses (28). Currently, the mechanisms that induce 
Th2 or Treg differentiation are not yet fully clarified. However. 
the maturation levels in tolerance-inducing DCs are low, and 
helminth products were shown to inhibit IL-12 secretion by DC 
(2). Furthermore, some helminth products have been shown to 
interfere with DC function by blocking host antigen processing 
or inducing mRNA degradation (2).

Additionally, M2 macrophages, another innate immune cell, 
have also been reported to suppress T-cell responses (29). The 
human patent filariasis infection pathogenesis was shown to be 

related with the induction of M2 macrophages (30, 31). Mono-
cytes from non-endemic donors directly inhibit CD4+ T cell pro-
liferation and cytokine production in IL-10 or PD-1-mediated 
manner when stimulated with Mf-lysates (32).

Effect of Chronic Helminth Infection on Host Bystander Re-
sponses
Immunosuppression during helminth infection is not limited to 
only parasite-specific responses, and chronic helminth infections 
have also been reported to impact the efficiency of vaccination, 
host susceptibility to infections, and allergen or autoantigen re-
sponses. The effects of helminths on the immune responses can 
be classified into two distinct categories: inhibitors of Th1, Th2, 
and Th17 immunoreactivity through regulatory mechanisms 
(eg., Treg cells) and inhibitors of Th1 and Th17 mediated respons-
es by activating the Th2 responses (33).

Efficiency of Vaccination
Levels of Th1 cytokines released in response to oral cholera vac-
cination drop in the presence of parasitic infection, and anti-par-
asitic worm therapy before challenge partially reverses this re-
duction (34). The same effect was also observed in the immune 
responses induced by the tetanus vaccine, and the level of Th1 
response triggered was found to be lower in patients with schis-
tosomiasis, onchocerciasis, and lymphatic filariasis (35-37). In 
addition, low Bacillus Calmette–Guérin vaccine immunogenicity 
level was observed in helminth-infected individuals (38).

Co-Infection
Due to the above-mentioned effects on the immune system, 
helminths are believed to provide resistance to Th2-responsive 
pathogens and increase host sensitivity to pathogens that in-
duce Th1 immune responses (11). Accordingly, an increase in the 
prevalence of bacterial infections such as malaria, HIV/AIDS, and 
tuberculosis was detected in areas where helminth infection was 
endemic (39). Patients suffering from helminth infection have 
lower levels of immune responses against malaria, HIV, and tu-
berculosis than the control group (40-43). 

Allergic, Autoinflammation, and Autoimmune Diseases
According to the “hygiene hypothesis,” decreased exposure to 
childhood infections due to increased hygienic conditions in 
the Western and developing countries reduces the possibility of 
cross infection and prevents the development of a healthy im-
mune system, increasing the chances of autoimmune and aller-
gic diseases in later ages (1). In accordance with this view, many 
studies have observed relatively low levels of autoimmune and 
abnormal Th2-related disease (such as asthma or allergic rhinitis) 
cases in helminth-infected populations (4).

Epidemiological and immunological evidence has led to the 
use of helminth parasites to carry out many clinical trials for the 
treatment of diseases such as allergy, autoimmunity, and auto-
inflammation. Studies with the administration of Trichuris suis (T. 
suis) eggs (TSO) for the treatment of inflammatory bowel diseas-
es, Crohn’s disease, multiple sclerosis, and colitis reported a re-
duction in disease severity (44-47). Besides, a study using human 
hookworms also reported a reduction in the levels of pathologi-8
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cal Th1/Th17 immune responses responsible for celiac disease by 
the induction of Th2 and IL-10 pathways (48). Another study also 
revealed that Necator americanus may be effective against food 
allergies via induction of Treg cells (49).

On the other hand, there are also studies in the literature showing 
that using helminths for treatment has no effect on the patients 
monitored. These conflicting findings can be explained by the hel-
minth genus used (1). Studies focusing on the therapeutic use of 
helminth or helminth derivative products still continue today (50).

CONCLUSION
Helminths can manipulate the host immune system for their 
own benefit and survive in the host for a long time. Due to these 
excellent immunomodulatory properties, chronic helminth in-
fections can influence vaccine efficacy as well as susceptibility 
to pathogens in the environment and is held responsible for the 
increased prevalence of allergic and autoimmune diseases ob-
served, especially in developed countries. Therefore, helminths 
and immunomodulator products they express are probably fu-
ture anti-inflammatory molecules to be used against autoinflam-
mation, autoimmune diseases, and allergies. Since the effects of 
helminths on the host immune system cannot be generalized 
among species, future work on the immune responses induced 
by candidate therapeutic agents will be a unique contribution 
to this area.
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