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ABSTRACT
Objective: This study was conducted to make gender estimation with parameters 
obtained from direct hand graphs by using machine learning (ML) algorithms, which is 
a current issue in the field of health. 
Methods: The study was conducted by retrospectively examining the X-ray images of 
132 men and 126 women between the ages of 18 and 65 who had not undergone hand 
surgery or who did not have any pathologies in their hands. Proximal phalanx I length 
(PPI), distal phalanx I length (PDI), proximal phalanx V length (PP5), medial proximal 
phalanx V length (PM5), distal phalanx V length (PD5), metacarpal I length (M1) and 
metacarpal V length (M5) were measured on the images. Gender estimation was made by 
using the measurements obtained at the input of ML models.  
Results: All the parameters obtained were found to be longer and significant in men 
when compared with women (p<0.05). In gender estimation with ML models, 0.88 Acc 
rate was obtained with Extra Tree Classifier algorithm and Acc rate of other algorithms 
was found to vary between 0.79 and 0.87. 
Conclusion: As a result of the study, parameters obtained from X-ray hand graphs were 
found to have highly accurate gender estimation with ML algorithms. In cases where the 
identity of individuals needs to be predicted quickly and accurately, the analysis of hand 
radiographs obtained from X-rays and ML algorithms shows that the prediction time can 
be minimized and high accuracy can be achieved.
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INTRODUCTION
Gender estimation is of great importance in forensic psychology 
since it has a critical role in the identification of unidentified 
individuals [1]. In cases when bodies have been decomposed or 

deformed due to crime and/or disasters, it is more complicated 
and difficult to identify a body. For this reason, it is very important 
to develop a method that can estimate the physical characteristics 
of individuals accurately [2].
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Main Points

• Can gender be estimated with parameters obtained from 
direct hand radiographs?

• What is the impact of Machine Learning Algorithms on 
gender prediction?

• Which parameters have a higher contribution when 
predicting gender from direct hand graphs?

 It is a very complicated process to determine gender from 
morphological features of the human skeleton [3]. Today, 
although Deoxyribonucleic acid (DNA) technologies are 
considered as the method with the highest reliability in gender 
determination, they have disadvantages such as accessibility, 
consuming time, the need for qualified personnel and cost. 
For this reason, the use of methods such as machine learning 
(ML) algorithms, artificial neural networks and deep learning 
has recently become widespread in gender estimation [4, 5]. In 
addition to morphological determination, gender estimation can 
also be determined by using metric methods. Statistical methods 
used in metric methods are becoming more popular with the 
linear discriminant analysis of bones [6]. The most widely used 
metric method for gender estimation is ML. ML is an analysis 
method automating using specific algorithms and creating 
models with machines [7].

Besides being frequently used in the field of engineering, ML has 
also begun to be used in the field of health [8]. These algorithms 
are classified as supervised, unsupervised and reinforced. 
Supervised learning is algorithms matching the relationship 
between input and output; unsupervised learning is algorithms 
matching with the characteristics of data about which there is no 
information and reinforced learning is algorithms matching input 
data with desired characteristics [9]. In the literature, the most 
frequently used algorithms among ML models are decision tree 
(DT), logistic regression (LR), extra tree classifier (ETC),  linear 
discriminant analysis (LDA), quadratic discriminant analysis 
(QDA) [10, 11].

Skeletal system may differ according to gender with the effect 
of sex hormones [12]. So far, gender identification has been 
analysed by using different body parts such as femur [13, 14], 
patella [15], mandible [16, 17], calcaneus [18] and occipital 
condyle. In cases when dimorphic parts such as the pelvis and 
the skull are harmed and it is difficult to make an examination, it 

becomes a necessity to estimate gender with the less dimorphic 
parts of the human skeleton such as hand and foot bones [19, 20].
X-Ray is often used for taking images of the hand bones. X-ray is 
an easily applicable, fast and inexpensive method. Due to having 
a rapid imaging process and being widely accessible, hand X-ray 
images can be interpreted easily in a short time by radiologists 
[21].

Current studies in literature show that gender estimation from 
hand bones by using different methodologies has become 
widespread [22].

The hypothesis of this study is to demonstrate the success of 
gender estimation using ML with parameters obtained from 
X-ray images of the hand skeleton. 

MATERIAL AND METHODS
The study was conducted by retrospectively scanning the direct 
hand graphs of 132 men and 126 women between the ages of 18 
and 65 who were admitted to İzmir Bakirçay University Çiğli 
Training and Research Hospital due to various health problems 
between 01.01.2020 and 20.07.2022. Individuals who had 
undergone hand surgery and those who had pathology, fracture 
and subluxation in their hands were excluded. The study was 
approved with İzmir Bakirçay University Çiğli Training and 
Research Hospital Non-Interventional Clinical Research Ethics 
Committee. The study was also conducted in accordance with 
the principles of the Declaration of Helsinki. 

Image Acquisition and Processing 
The images were obtained by retrospectively scanning the 
radiological archive system of the hospital. The images obtained 
were transferred to personal work station Horos DICOM Viewer 
(Version 3.0, United States of America) program in Digital 
Imaging and Communications in Medicine (DICOM) format. 
These images were measured by using the measurement console 
of the program (Figure 1). 

Measurement parameters were: 
•	 Proximal phalanx I length (PPI)
•	 Distal phalanx I length (PDI)
•	 Proximal phalanx V length (PP5)
•	  Medial phalanx V length (PM5)
•	 Distal phalanx V length (PD5)
•	 Metacarpal I length (M1)
•	 Metacarpal V length (M5)
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Figure 1. Demonstration of parameters

Machine Learning Algorithms Modelling Process
ML algorithms were modelled on a Monster Abra A7 model 
personal computer with 8 Gb Ram and i5 operating system. 
Python 3.9 programming language and scikit-learn 1.1.1 
framework were preferred in modelling. Of the data used in 
modelling, 80% were used in training and 20% were used 
as test set. Linear Discriminant Analysis (LDA), Quadratic 
Discriminant Analysis (QDA), Logistic Regression (LR), Extra 
Tree Classifier (ETC), Decision Tree (DT), Random Forest (RF), 
Gaussian Naive Bayes (GaussianNB), K-Nearest Neighbors 
(k-NN) algorithms were used as ML models. Accuracy (Acc), 
Specificity (Spe), Sensitivity (Sen), F1 score (F1) values were 
used to evaluate the performance of models. 

Equation 1. (TP; True positive, TN; True negative, FP; False 
positive, FN; False negative).

In addition, SHAP analyser of RF model was used to show the 
effect of parameters on gender. 

Statistical Analyses 
Basic statistical analyses were obtained by using Minitab 17 and 
Spss 21 programs, with p<0.05 value considered significant. 
Normality distribution of data was tested with Normality 

test Anderson Darling test. In descriptive statistics of data, 
mean±standard deviation was used for normally distributed data, 
while median (minimum-maximum) values were used for data 
which were not normally distributed. In the comparison of paired 
groups, Two Simple T test was used for normally distributed 
data, while Mann Whitney-U test was used for data which were 
not normally distributed. Correlation between parameters and 
the degree of correlation were shown with Pearson correlation 
test for normally distributed parameters, while they were shown 
with Spearman rho correlation test for parameters which were 
not normally distributed. ROC curve was used to show the power 
of the parameters. 

RESULTS 
In this study which was conducted on 312 men and 126 men 
between the ages of 18 and 65, it was found that M1, M5, PP5 
parameters were normally distributed, while PP1, PD1, PD5, 
PM5 parameters were not normally distributed. Table 1 shows 
the descriptive statistics and comparison of normally distributed 
parameters in terms of gender. It was found that M1, M5, PP5 
parameters were statistically longer in men when compared with 
women and significant difference was found between genders.
 
Table 1. Comparison and descriptive analysis results of normally 
distributed parameters in terms of gender 

Parameters
(cm)

Gender
Mean±Standard 
Deviation

P value*

M1
Male 4.839±0.367

0.000Female 4.353±0.341

M5
Male 5.567±0.483

0.000Female 5.110±0.463

PP5
Male 3.337±0.285

0.000Female 3.087±0.313

Table 2 shows the descriptive statistics and comparison of non-
normally distributed parameters in terms of gender. It was found 
that PP1, PD1, PM5, PD5 parameters were statistically longer in 
men when compared with women and significant difference was 
found between genders in these parameters (p<0.05).

Table 3 shows the correlation and correlation degree of normally 
distributed parameters in terms of gender. A very weak significant 
correlation was found in M1 parameter in terms of gender 
(p<0.05).
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Table 2. Comparison and descriptive analysis results of non-
normally distributed parameters in terms of gender 

Parameters Gender
Median

(Min.-Max.)
P value**

Age (years)
Male

33
(18-65)

0.006
Female

43
(18-65)

PP1 (cm)
Male

3.055
(1.749-3.930)

0.000
Female

2.779
(2.367-4.336)

PD1 (cm)
Male

2.210
(1.289-2.813)

0.000
Female

1.966
(1.376-4.336)

PM5 (cm)
Male

1.840
(1.184-4.020)

0.000
Female

1.634
(1.246-1.775)

PD5 (cm)
Male

1.582
(1.150-2.155)

0.000
Female

1.375
(1.109-1.775)

**Mann Whitney-U test

Table 3. Pearson correlation test results of normally distributed 
parameters  

Parameters r/p M1** M5** PP5**

M1*
r
p

0.190
0.033

0.124
0.168

0.053
0.558

M5*
r
p

0.022
0.810

0.054
0.545

-0.039
0.664

PP5*
r
p

0.096
0.285

0.113
0.206

0.042
0.641

*Male, **Female

Table 4. Spearman rho correlation test results of non-normally 
distributed parameters
Parameters r/p PP1** PD1** PM5** PD5**

PP1*
r
p

-0.017
0.853

-0.059
0.513

-0.090
0.318

0.003
0.969

PD1*
r
p

-0.097
0.280

-0.057
0.528

-0.083
0.358

0.007
0.936

PM5*
r
p

0.118
0.188

-0.058
0.516

0.107
0.231

0.038
0.670

PD5*
r
p

-0.073
0.419

-0.048
0.597

0.090
0.315

0.149
0.095

*Male, **Female

Table 4 shows the correlation and correlation degree of non-
normally distributed parameters in terms of gender. No significant 
correlation was found in terms of gender as a result of statistical 
analysis (p>0.05).

Gender discrimination power of the parameters was shown with 
ROC analysis and the highest AUC value was obtained with M1 
parameter (Figure 2).

Table 5 shows the AUC, Cut off, p, sen, spe values of the 
parameters.

As a result of ML modelling, the highest Acc value was found to 
be 0.88 with ETC algorithm (Table 6).

Figure 2. ROC curve

Table 5. ROC curve scores 

Parameters AUC (95%) Cut off p Sen Spe

M1
0.836 

(0.788-0.885)
4.580 0.000 77.7 76.5

PP1
0.794 

(0.738-0.851)
2.896 0.000 75.4 75.0

PD1
0.751 

(0.691-0.811)
2.080 0.000 69.8 69.7

M5
0.750 

(0.692-0.809)
5.320 0.000 67.5 66.7

PP5
0.738 

(0.677-0.800)
3.237 0.000 69.0 68.9

PM5
0.726 

(0.664-0.788)
1.737 0.000 68.3 68.2

PD5
0.797 

(0.743-0.851)
1.462 0.000 73.8 73.5
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Table 6. Performance values of machine learning models  

Algorithms Acc Spe Sen F1

LDA 0.81 0.81 0.81 0.81

QDA 0.79 0.79 0.79 0.79

LR 0.83 0.83 0.83 0.83

ETC 0.88 0.89 0.88 0.88

DT 0.87 0.87 0.87 0.87

RF 0.87 0.87 0.87 0.87

GaussianNB 0.81 0.81 0.81 0.81

k-NN 0.83 0.83 0.83 0.83

Table 7. Confusion matrix table of Extra Tree Classifier algorithm 

Figure 3. SHAP analyser (Feature 0: age, Feature 1: M1, Feature 
2: PP1, Feature 3: PD1, Feature 4: M5, Feature 5: PP5, Feature 
6: PM5, Feature 7: PD5).

Table 7 shows the confusion matrix of the highest Acc value as 
a result of ML modelling. As a result of the algorithm, 25 of 
29 males and 21 of 23 females in the test set were estimated 
correctly. 

Table 7 Confusion matrix table of Extra Tree Classifier algorithm 
The effects of parameters on the overall result were evacuated by 
using SHAP analyser of RF algorithm and it was found that M1 
parameter made the highest contribution to gender determination 
(Figure 3). 

DISCUSSION
In this study in which gender estimation was made from 
anthropometric measurements of the hand by using ML models, 
0.88 Acc rate was obtained with ETC algorithm. With SHAP 
analyser of RF algorithm, the highest three contributions in 
gender determination were found to be with M1, PP1, PD5 
parameters, respectively. In addition, contribution of parameters 
was evaluated with ROC analysis and M1, PD5 and PD1 
parameters were found to have the highest three contributions, 
respectively. As a result of the basic statistical analysis, all 
parameters were found to be longer and significant in men when 
compared with women (p<0.05).

In forensic anthropology, determining the identity of an individual 
with anthropometric methods is a common method because 
postmortem body integrity of individuals cannot be preserved 
most of the time and there arises a need for identification with 
anthropometric methods from the preserved/non-eroded skeletal 
remains of individuals. Natural disasters, wars and terrorist 
incidents are the most obvious examples of this situation. A 
critically important biomarker in determining an individual’s 
identity is gender. Gender allows for the elimination of about 
half of the existing identity pool [8, 23, 24].

Using ML algorithms for identification of individuals, evaluation 
and interpretation of forensic evidence is important for obtaining 
accurate and quick results in forensic anthropology. Computer 
based applications have become very important with the 
digitalizing world. ML algorithms are also important in this 
respect and they stand out by giving more objective results than 
classical methods  [8, 25, 26].  

In a study Udayangani et al. conducted with the X-ray images of 
40 women and 40 men, they found that M1, M5, PP1, PD1, PP5, 
PM5 and PD5 parameters were longer in men than in women and 
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they reported differences in terms of gender (p<0.05) [27]. In a 
study Sandra et al. examined the X-ray images of 280 individuals, 
they found that PP1, PD1, PP5, PM5 and PD5 parameters were 
longer in men than in women and they reported significant 
difference in terms of gender (p<0.05) [28]. In a study conducted 
with the X-ray images of 30 women and 30 men in Turkish 
population, Ozsoy et al. found that PP1, PD1, PP5, PM5 and PD5 
parameters were longer in men than in women and they reported 
significant difference in terms of gender (p<0.05) [29]. In a study 
conducted with the X-ray images of 100 Egyptians, Morsi et al. 
reported that M1, M5, PP1, PD1, PD5, PM5 and PD5 parameters 
were longer in men than in women [30]. In the present study we 
conducted with the X-ray images of 132 men and 126 women 
between the ages of 18 and 65 in Turkish population, we found 
that M1, M5, PP1, PD1, PD5, PM5 and PD5 parameters were 
longer in men than in women. In the present study, an Acc rate 
between 0.79 and 0.88 was obtained in gender estimation with 
ML modelling. The literature and our results show that these 
parameters used in hand anthropometry are longer in men and 
there is a significant difference in terms of gender. The difference 
of our study from other studies was that ML algorithms, a current 
methodology in the field of health, were used to make gender 
estimation instead of statistical analyses used in basic metric 
analyses. In addition, an important difference of ML algorithms 
used in the present study is being based on the principle of 
training 80% of data and testing 20% instead of training all of 
the data. A more realistic accuracy rate is found in this way. 

Limitations
Small sample size, the fact that the study was conducted only on 
a specific population and the disadvantage of superposition since 
X-ray is a two-dimensional imaging technique are limitations of 
the study. We believe that working with a larger sample in the 
future will increase accuracy rate. 

CONCLUSION
In the present study which was conducted to estimate gender 
from hand anthropometry, we believe that the data obtained 
from the first and fifth metacarpal bone and phalanx will make 
significant contributions to forensic anthropology. 
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