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ABSTRACT

Objectives: It is aimed at magnetic resonance imaging (MRI)-based differential 
diagnosis of parotid gland tumors (PGTs) using deep learning. 
Methods: This study included 117 PGTs obtained from 113 patients.  T2-w, T1-w, contrast-
enhanced T1-w, Diffusion Weighted Imaging-b0, Diffusion Weighted Imaging-b2000 
(DWI-2000), and apparent diffusion coefficient sequences of these patients were used in 
the study.  We implemented four different classification models, and we categorized the 
images as benign-malignant, pleomorphic adenoma (PA)-Warthin, Warthin-malignant, 
and all classes (mucoepidermoid carcinoma-other benign-other malignant-PA-Warthin). 
We constructed classification for each sequence separately using the ResNet18 
architecture, with the dataset split into 80% for training and 20% for validation.
Results: The most successful model in this study, achieving an accuracy of 95.37% and 
an F1-score of 94.74% in classifying malignant-Warthin images in T1-w sequences, also 
demonstrated the highest accuracy among all models evaluated. For the classification 
of benign-malignant and the differentiation across all classes, the highest accuracies 
were achieved with the T2-w sequence at 93.75% and 86.67%, respectively. In the 
differentiation of PA-Warthin, T1-w and DWI-b0 sequences demonstrated the highest 
performance, both with an accuracy of 90.36%.
Conclusion: The deep networks proposed in the study supported MRI-based differential 
diagnosis of PGTs with high accuracy, and the user-friendly software classified images 
with high accuracy in about 10 seconds.
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Main Points

•	 The differential diagnosis of parotid gland tumors 
is crucial for determining treatment options and this 
remains a challenge.

•	 The model proposed in this study differentiates parotid 
gland tumors with an accuracy rate of 95.37%. 

•	 Deep networks can successfully and rapidly classify 
parotid gland tumors and improve the efficiency of MRI.

INTRODUCTION
Parotid gland tumors (PGTs) are the most common salivary 
gland tumors, constituting 2-6% of head and neck malignancies. 
The most common benign tumors are pleomorphic adenoma 
(PA) and Warthin tumors, while mucoepidermoid carcinoma 
(MC) is the most common malignant type [1,2]. Most tumors 
are in the superficial lobe of the parotid gland. Treatment 
varies by subtype; enucleation or partial parotidectomy is used 
for benign tumors, while total parotidectomy or aggressive 
surgery is needed for malignant tumors [3]. Preoperative 
differential diagnosis is crucial for determining the treatment 
algorithm. Fine needle aspiration biopsy aids in diagnosis but 
has limitations, including insufficient material, technical failure 
in deep lobe lesions, local infection, and tumor seeding [4].

On the other hand, imaging modalities are frequently used for 
preoperative differential diagnosis and the detection of tumor 
locations. Although ultrasonography and computed tomography 
(CT) are also used for this purpose, magnetic resonance imaging 
(MRI) is the most sensitive imaging modality due to its high soft 
tissue resolution [5,6]. In addition to determining the nature of 
the tumor, MRI successfully reveals facial nerve involvement 
and its relationship with adjacent structures  [7, 8]. Conventional 
MRI sequences like T1-w and T2-w evaluate tumor size and 
its relationship with adjacent structures. Diffusion-weighted 
imaging (DWI) and apparent diffusion coefficient (ADC) values 
help distinguish malignancy, though exceptions like Warthin 
tumors exist due to their unique tissue composition. Contrast-
enhanced sequences aid in detecting perineural spread [6-9].

Recently, methods such as dynamic contrast-enhanced MRI, 
Susceptibility-Weighted Imaging, and MR spectroscopy have 
also been used in differential diagnosis [10]. However, despite 
all these sequences, the diagnostic challenge of MRI remains 

[11,12]. For this reason, decision support systems have been 
created with artificial intelligence (AI) techniques developed in 
recent years. In this context, we aimed to perform an MRI-based 
classification of different PGT subtypes using deep learning 
(DL) models.

MATERIAL AND METHODS
This retrospective study was approved by the institutional ethics 
committee (2021/175). Informed consent was obtained from all 
individual participants included in the study. 

Patient Selection
Patients who underwent surgery for PGTs in the hospital between 
2017 and 2023 and had pre-operative contrast-enhanced neck 
MRIs were included in the study. Our exclusion criteria were 
patients whose images could not be accessed, patients with 
poor image quality, and patients with histopathologic results of 
non-parotid pathologies. A total of 148 patients were initially 
analyzed and 117 PGTs from 113 patients were included in 
the study following exclusion criteria. Forty-two patients (43 
tumors) were PA, forty-three patients (45 tumors) were Warthin 
tumors, nine patients (10 tumors) were other benign tumors 
(hemangioma, basal cell adenoma, lymph node), nine patients 
were MC, and ten patients were other malignant tumors (adenoid 
cystic carcinoma, polymorphous adenocarcinoma, metastasis). 

Dataset
Non-contrast T1 (T1-w), T2 (T2-w), DWI-b0 (DWI-0), 
DWI-b2000 (DWI-2000), ADC, and contrast-enhanced T1 
(T1c-w) sequences of all patients were included in this study. All 
images were reviewed and axial slices showing the maximum 
tumor dimension were selected and saved for further analysis. 
A radiology resident with 5 years of experience and a head and 
neck radiologist with 13 years of experience jointly evaluated 
all slices. All images were exported as Digital Imaging and 
Communications in Medicine (DICOM) files. These images 
were cropped into PNG format with the tumor in the center 
and the parotid gland around it and used as the final data set 
for the study. To understand the dataset used in the study, we 
provided different sequence images obtained from a patient in 
Figure 1. The sizes of these images were usually 224*224*3 
after cropping. 
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Figure 1. Sample images of the six MRI sequences from the 
same patient a) T2-w b) T1-w c) T1c-w d) DWI-0 e) DWI-2000 
f) ADC

Methods
We prepared the dataset using T2-w, T1-w, T1c-w, DWI-0, 
DWI-2000, and ADC sequences. In this dataset (117 PGTs and 6 
different sequences), we aimed to differentiate between benign-
malignant, PA-Warthin, Warthin-malignant, and all groups.  We 
trained the models separately for each sequence and we aimed 
to develop a total of 24 models for the differential diagnosis 
of benign-malignant, PA-Warthin, Warthin-malignant, and all 
classes for six different sequences. For this purpose, we set the 
input size of these images to be equal to 224*224*3, and here 
they were 24-bit images. We determined the train and validation 
set ratios of each of the 24 DL models trained as 0.8 and 0.2, 
respectively. 

Preprocessing, Classification Models, and Training 
Parameters
We augmented related images for the dataset with the help 
of the rotate command, and we rotated them using different 
degree angles [13]. ResNet18 is used in this study [14]. This 
architecture is a convolutional neural network with 18 layers 
deep. This model, which can classify up to 1000 object 
categories, has an image input size of 224*224*3. The number 
of layers and connections for this architecture is equal to 71 
and 78, respectively. The features extracted from the fc1000 
and the probe layers immediately after it is a column matrix of 
1*1*1000, and it is stated in Matlab that the total learnable value 
is equal to 11.6M. We set Momentum, Learn Rate Drop Factor, 
Learn Rate Drop Period, and L2Regularization to 0.9, 0.1, 10, 
and 1e-4, respectively, and Initial Learn Rate and Max Epoch to 

1e-3 and 30. Validation Patience was set to Inf, with Mini Batch 
Size and Validation Frequency at 128 and 10 for ResNet18. The 
study utilized Matlab R2022a on a computer with an 11th Gen 
Intel Core i5-1135G7, 2.40GHz, and 8GB RAM.

GUI Design
We also designed a user-friendly Graphical User Interface (GUI), 
which allows users to upload three images to the application to 
determine which of the benign-malignant, PA-Warthin, and all 
classes (MC-other benign-other malignant-PA-Warthin) these 
images belong to. Before starting the design of this software, it 
is worth noting that we completed the training of all the models 
used in the study and then saved these trained networks in a 
suitable folder. Then, we first created the figure file of this GUI 
and added three axes and three user-controlled buttons and text 
sections that can print the prediction result on the screen. 

RESULTS 
The mean age of 47 female and 66 male patients included in this 
study was 56.2±14.9 years. Table 1 presents the performance 
metrics obtained using the ResNet18 architecture for the 
validation set, comprising 20% of the dataset. According to 
table 1, the architecture categorizing benign-malignant for the 
T2-w sequence had an accuracy of 93.75% and an F1-score of 
94.66%. In the T1-w sequence, the model was most successful in 
classifying malignant-Warthin images, with an accuracy value 
equal to 95.37%. This value is also the highest accuracy achieved 
in the entire study.  In T1c-w, DWI-2000, and ADC, the most 
successful model categorizing benign-malignant images, with 
their accuracy values equaling 91.07%, 91.84%, and 90.91%, 
respectively. In addition, for DWI-0, malignant-Warthin images 
were classified with an accuracy and F1 score of 93.52%, and 
92.47%, respectively. 

Figure 2 shows the user-friendly GUI, where three images can 
be easily uploaded, alongside a screenshot of the results. The 
software displayed the addresses of the uploaded images and 
successfully predicted 'Benign' when a benign tumor from the 
T1-w sequence was input. A pleomorphic adenoma from the 
T2-w sequence was applied to the middle axis, yielding the 
correct label 'Pleomorphic Adenoma.' Lastly, a mucoepidermoid 
carcinoma from the ADC sequence was uploaded, and the GUI 
accurately detected it as 'Mucoepidermoid Carcinoma.' These 
results demonstrate the proposed GUI application's effectiveness 
in correctly identifying image labels.
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Figure 2. Screenshot of the GUI application designed for this study

Table 1. Performance metrics obtained for the validation set using ResNet18 architecture 

Train (80%),
Validation (20%)

Accuracy % Sensitivity % Specificity % Precision % F1 score %

T2
-w

Benign-Malignant 93.75 100 86 89.86 94.66
PA-Warthin 87.95 87.50 88.37 87.50 87.50

Malignant-Warthin 93.46 88 98.25 97.78 92.63
All classes 86.67 85.52 96.51 88.33 86.47

T1
-w

Benign-Malignant 91.07 98.39 82 87.14 92.42
PA-Warthin 90.36 87.50 93.02 92.11 89.74

Malignant-Warthin 95.37 90 100 100 94.74
All classes 81.21 79.95 95.06 84.65 81.68

T1
c-

w

Benign-Malignant 91.07 100 80 86.11 92.54
PA-Warthin 86.75 85 88.37 87.18 86.08

Malignant-Warthin 90.74 82 98.28 97.62 89.13
All classes 83.64 84.02 95.76 85.59 84.39

D
W

I-
0

Benign-Malignant 90.18 100 78 84.93 91.85
PA-Warthin 90.36 92.50 88.37 88.10 90.24

Malignant-Warthin 93.52 86 100 100 92.47
All classes 84.85 83.90 96.01 87.65 85.20

D
W

I-
20

00

Benign-Malignant 91.84 100 78.95 88.24 93.75
PA-Warthin 83.95 97.37 72.09 75.51 85.06

Malignant-Warthin 91.58 78.95 100 100 88.24
All classes 80.95 78.29 94.79 86.61 81.21

A
D

C

Benign-Malignant 90.91 100 79.17 86.11 92.54
PA-Warthin 86.75 87.50 86.05 85.37 86.42

Malignant-Warthin 85.85 70.83 98.28 97.14 81.93
All classes 84.05 82.45 95.81 86.91 83.99
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DISCUSSION
Parotid gland tumors are the most common salivary gland 
tumors and their treatment depends on whether they are benign 
or malignant, less aggressive approaches are used for benign 
tumors, while more aggressive approaches are preferred for 
malignant tumors [9]. Therefore, preoperative differential 
diagnosis of PGTs is critical. The most used and most sensitive 
technique for differential diagnosis is MRI. However, despite 
current MRI sequences, the success of differential diagnosis is 
not at the desired level [9,12].

Artificial intelligence-based architecture is now observed to 
be usable in almost every field. It is significant to note that 
optimization and AI-based models are utilized in various 
subjects, from education to health optimization to renewable 
energy sources [15,16]. In the scope of this study, we aim to 
successfully classify PGTs. 

In this study, we focused on four classifications. First, we aimed 
at benign-malignant differentiation, the most significant and 
initial step in the differential diagnosis process, testing the 
success of different sequences. Then, we differentiated PA from 
Warthin tumors, both benign but with malignant potential if 
untreated, evaluating the performance of all sequences. We then 
assessed the success of all sequences in differentiating Warthin 
and malignant tumors, which are challenging due to similar 
ADC values, and finally in distinguishing all five groups.

When evaluating the results of our study, it is evident that 
satisfactory success values were achieved, with the highest 
accuracy of 93.75% in benign-malignant differentiation. 
A notable finding is that the pre-contrast T1-w sequence 
outperformed the contrast-enhanced T1-w sequence in PA-
Warthin and Warthin-malignant differentiation. Based on these 
results, we anticipate that DL could reduce the need for contrast 
media in future tumor differentiation, potentially lowering costs 
and side effects, though further studies are required.

Regarding the models used, the ResNet18 architecture proved 
advantageous in terms of training time and performance 
metrics. Additionally, the user-friendly GUI application 
developed in the study may aid users in diagnosis and treatment 
planning. Considering this information, we describe the studies 
in literature in the following paragraph.

In [17], an accuracy of 0.81 was achieved in pixel-wise tumor 
classification with U-net using five different sequences. In [11], 
the highest success rate for benign-malignant discrimination 
was 0.739 when the sequences were used separately, and 
0.822 when all sequences were combined. In another study, 
classification was performed with five different sequences 
and the classification success between the control group, PA, 
Warthin, and malignant tumors was reported as 92.86% [12]. 
X. Liu et al. [18] published a classification accuracy of 0.84 in 
benign-malignant discrimination with DWI sequence. Matsuo 
et al. [19] presented an AUC value of 0.86 with the VGG16 
model. When these results are evaluated with the results of our 
study, it is seen that our results are competitive and successful 
according to the studies in the literature. The GUI model we 
developed constitutes the innovative aspect of our study, which 
is different from the studies in the literature. In addition, not only 
MRI was used in the literature; CT was used in [20], ultrasound 
imaging and clinical data in [21]. Moreover, we have conducted 
some segmentation and fusion-based classification studies [22-
24]. We believe that these studies will contribute to differential 
diagnosis and preoperative preparation in the future.

This study has some limitations. Firstly, the number of patients 
was limited and different in benign and malignant groups. We 
tried to address this with augmentation techniques. Secondly, 
only ResNet18 architecture was used in this study. In the 
future, comparative studies with other popular models for 
image classification such as DenseNet or EfficientNet can be 
conducted. Thirdly, we performed differential diagnosis with 
deep networks through single slices with two-dimensional 
images. In the future, with a larger number of images, studies 
can be performed with three-dimensional images that include 
the entire tumor.

CONCLUSION
This study demonstrated the effectiveness of DL models in 
the MRI-based differential diagnosis of PGTs. The ResNet18 
architecture achieved high accuracy across various MRI 
sequences, with the best performance observed in malignant-
Warthin classification using T1-w. The T2-w sequence was 
most effective for benign-malignant classification, while T1-w 
and DWI-b0 showed the highest performance in PA-Warthin 
differentiation. The proposed DL approach enables automated 
and highly accurate classification of PGTs. The developed 
software quickly and efficiently classifies images, highlighting 
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its potential for clinical implementation. Future prospective 
studies involving larger datasets and advanced architecture 
could further increase the generalizability of the software.
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